

2

Rotary Damper

A rotary type damper utilizing oil viscosity resistance or hydraulic resistance
Provides a soft opening/closing action of doors and lids and creates a touch of quality
for furniture, automotive interiors, and equipment.

Read these instructions before use

This owner's manual contains various safety cautions regarding the proper handling of this product, and preventing danger to the operator as well as damage to the plant and the machine. Please read this manual thoroughly before using the product.

Warning

Definition of "Warning"

"Warning" applies to situations in which death or serious injuries may occur to the user, etc. if the potential dangers of the products are not avoided.

A person who designs the equipment or determines the specification shall determine the compatibility of a rotary damper.

● A person who designs the equipment or determines the specification shall determine the compatibility of a rotary damper with the equipment as necessary after carrying out a performance verification and a life test because there are a variety of conditions for applications.

Please do not use outside the specification range of a rotary damper.

● Any use outside the specification range will cause a malfunction or damage to product.

Enforcement of safety measures for applications as follows

● Please enforce a safety measure when using in the conditions and environments listed below, and consult our company beforehand for determining the adequacy of use.

1) The use in such places as an environment outside the specification not clarified in the catalogs or owner's manuals, outdoors or direct sunlight

2) The use for those devices and applications such as nuclear power equipment, the devices directly or indirectly related with the services of railroad, boats and ships and the running of vehicles, aerospace devices, military devices, medical devices, devices contacting with beverages and foods, combustion equipment, amusement devices influencing human or property, emergency shut down circuit, press devices, etc., a serious influence on humans or property is anticipated and special safety is requested.

Do not throw into an open flame

● Throwing into an open flame poses a risk of injury by explosion or ignition of encapsulated oil.

Caution

Definition of "Caution"

"Caution" applies to situations in which minor injuries or property damage may result if the operation or maintenance procedures are not strictly followed.

Do not operate without sufficient mounting strength

● Operating with insufficient mounting strength may damage the main machine and cause injuries.

● Ensure sufficient mounting strength of load torque x safety factor

Do not operate without an external stopper

● Use within the damper's range of operating angle. Do not use the damper itself as a stopper by setting the rotational limit position of the rotating shaft as the resting position of the rotating object. Using the damper itself as a stopper may damage the damper and consequently damage the main machine, and it may also result in injuries.

● Set the external stopper to the operating angle before use.

Do not use when the maximum operating torque is exceeded

● Using this product beyond the maximum operating torque may cause an oil leak, reduced durability, and damage to the shaft. This may damage the damper and consequently damage the main machine, and it may also result in injuries. Do not exceed the maximum operating torque when using this product.

Do not operate outside the operating temperature range

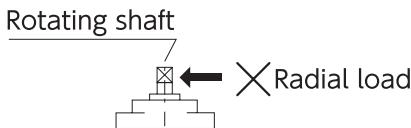
● Using this product outside the operating temperature range may cause an oil leak and torque problems. Use this product within the operating temperature range.

Usage environment

● This product cannot be used in a vacuum or under high pressure, as this will cause damage to the main machine.

● Do not use in an environment where chips, cutting oil, water, etc. can come in contact with the linear damper. This will result in a malfunction due to an oil leak caused by damage.

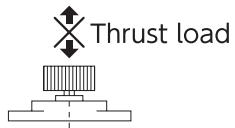
Do not discard oil more than is necessary

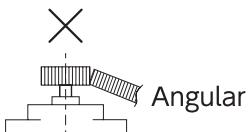
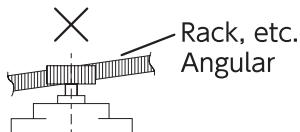

● Discarding the oil contained in dampers more than is necessary will pollute the environment.

● Dispose the oil according to laws concerning waste management and cleaning.

Remodeling of the product is prohibited

● Any remodeling on the product (additional working, coating, welding, hardening, etc.) will void all warranties by our company.


Radial load to the shaft



- Applying load to the rotating shaft (gear) in a radial direction may cause an oil leak, torque problems, and damage to the shaft (or to the gear if the gear is used).

Thrust load to the shaft

- Applying load to the rotating shaft (gear) in a thrust direction may cause an oil leak, torque problems, and damage to the main unit (or to the gear, or cause the gear to become disengaged, if the gear is used).

- ★ When assembling, attach the damper's gear to the opposing arm (gear) as parallel as possible.

Using the product above its maximum rotations

- Using this product above its maximum rotations may cause an oil leak, torque problems, and damage to the rotating shaft.

- ★ Please refer to the catalogue for the product's maximum rotations.

(*If you are going to exceed the maximum rotations when using this product, please contact our sales department.)

Using the product outside its operating temperature range

- Using this product outside the operating temperature range may cause an oil leak and torque problems.

- ★ Please refer to the catalogue for the product's operating temperature range.

(*If you are going to use this product outside its operating temperature range, please contact our sales department.)

Using the product above its maximum cycles

- Using this product above its maximum cycles may cause torque down and an oil leak.

- ★ Please refer to the catalogue for the product's maximum cycles.

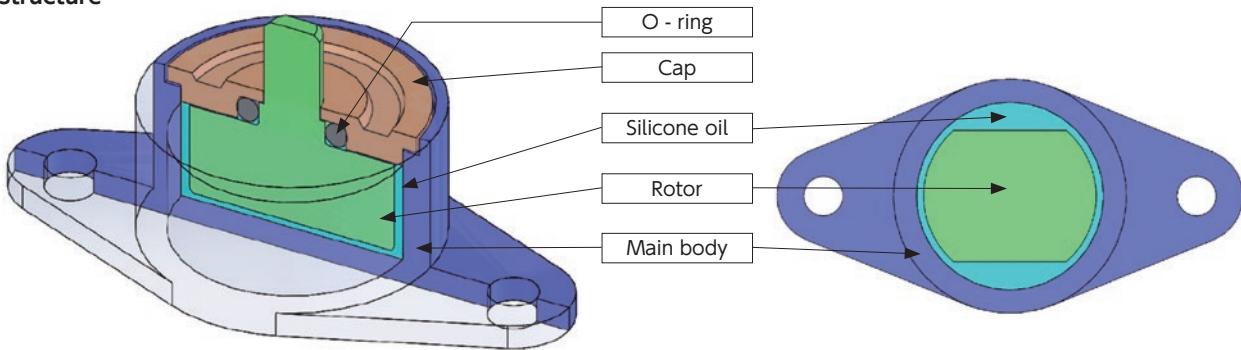
(*If you are going to exceed the maximum rotations when using this product, please contact our sales department.)

Over-tightening of mounting screws

- Over-tightening the mounting screws when installing a rotary damper may cause damage to the main unit.

- ★ Based on the types and sizes of the screws used, please apply an appropriate tightening torque to tighten the screws.

Disposal


- When a rotary damper is no more necessary, please take a proper disposal procedure in accordance with the local ordinance, rules, etc. as an industrial waste.

Fuji Latex is not responsible for any secondary accidents caused by a rotary damper. The user should implement preventative measures against such secondary accidents.

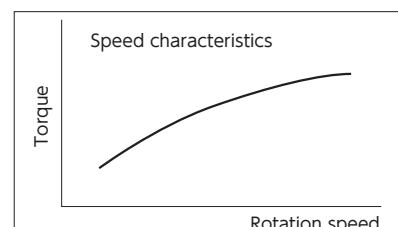
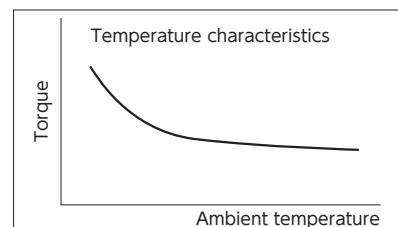
Basic Structure and Principle

1. Rotary Damper

Basic structure

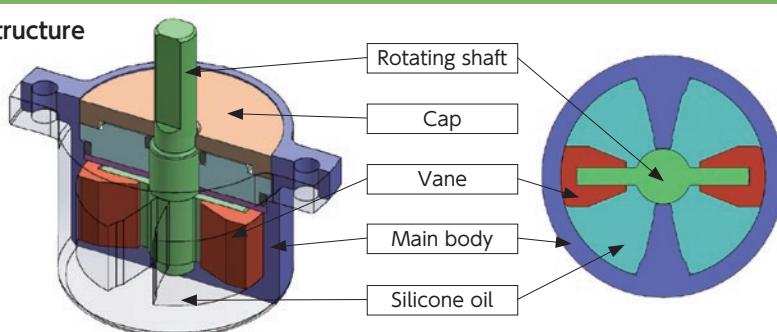
This is a rotary damper that utilizes the braking force generated by the oil's viscosity resistance. The braking force generated by oil viscosity, clearance between the rotor and the main body, and the oil's contact area varies based on the structure shown above.

1-1) Temperature characteristics



The torque of a rotary damper varies according to the ambient temperature. This is because the viscosity of the oil inside the damper changes according to the temperature.

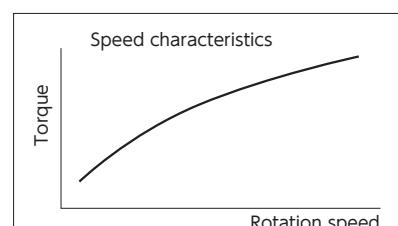
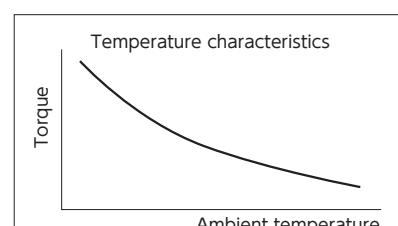
1-2) Speed characteristics

The braking torque of a rotary damper varies according to the cycle rate. In general, the torque increases when the cycle rate increases, and the torque decreases when the cycle rate decreases. The rated torque listed in the catalogue is the torque generated when the cycle rate is 20rpm.


1-3) Direction of Torque Generation

The torque is generated in both directions in principle, but one-way rotary dampers are available for some of the models with an implemented one-way clutch

2. Vane Damper



Basic structure

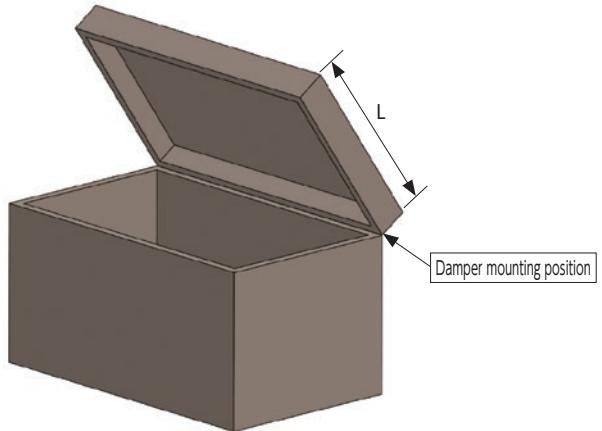
This is a rotating-type damper that utilizes the oil pressure. The braking force generated by oil viscosity, clearance between the rotor and the main body, and the vane's pressure-receiving area varies based on the structure shown above.

Basic characteristics

Similar to the rotary damper, the torque varies according to the ambient temperature. Its basic structure is a dashpot structure (single orifice). The internal pressure of a damper increases as the rotation speed increases, which consequently increases the torque.

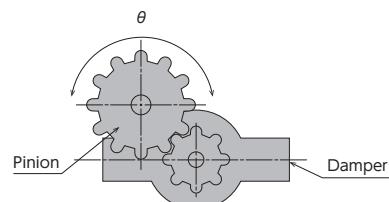
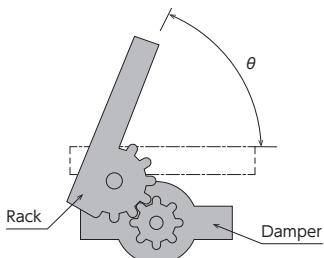
Selection / Key to Model Number

Selection of Rotary Damper and Vane Damper


1) If the rotating shaft and the damper's axis are directly connected, the approximate torque can be calculated based on the following equation if the lid size and the weight are known.

$$\text{Torque } T = M \times 9.8 \times \frac{L}{2} (\text{N}\cdot\text{m})$$

M : Weight of the lid (kg)



L : Dimensions of the lid (m)

($\frac{L}{2}$ is assumed as the lid gravity center position)

Using the above equation, determine the maximum torque generated immediately prior to the closing of the lid. Use a prototype to confirm its performance in an actual machine, and determine the torque required. Fine adjustment of the torque can be done by varying the viscosity of the oil inside the damper.

2) If the damper's rotating shaft and the lid's rotating shaft are connected by a lever or a gear, the results of the aforementioned torque calculation will vary according to the lever ratio or gear ratio.

There is no exact method for determining whether a damper is suitable for the application or not. In the event that closing time is chosen as a factor, an apparent damper effect can be observed if it takes 2 seconds or longer for the lid to fully close after it is allowed to free-fall from a 60° angle. However, it is ultimately up to the user as to whether the damper is suitable for the application or not.

Key to Model Number

<Rotary damper, Disc damper

FRN-F2-R

Series name
FRT : Bi-directional rotary damper
FRN : Uni-directional rotary damper
FDT : Bi-directional disc damper
FDN : Uni-directional disc damper

Model name

Damping direction

203

G

Torque

With or without gear
G : With gear, Blank : without gear

Gear specification

The last digit indicates the power, and the torque is expressed as below.
203=20×10³ =20,000gf·cm
=2N·m(20Kgf·cm)

R : Torque is generated in a clockwise direction

L : Torque is generated in a counter-clockwise direction

Vane Damper

FYN-H1-R

Series name
FYT : Bi-directional vane damper
FYN : Uni-directional vane damper

Model name

Damping direction

104

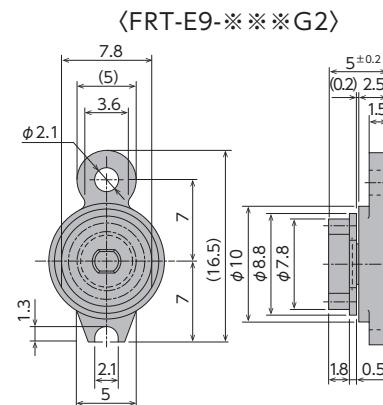
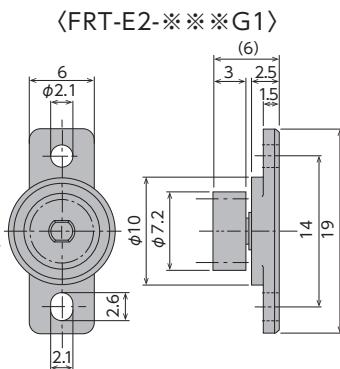
Torque

The last digit indicates the power, and the torque is expressed as below.
104=10×10⁴ =100,000gf·cm
=10N·m(100Kgf·cm)

R : Torque is generated in a clockwise direction


L : Torque is generated in a counter-clockwise direction

Rotary Damper



FRT-E2/E9 Series

Bi-Directional
Uni-Directional
Fixed Type
Adjustable type
Self-adjusting

RoHS Compliant

●Products specification might be changed without notice.

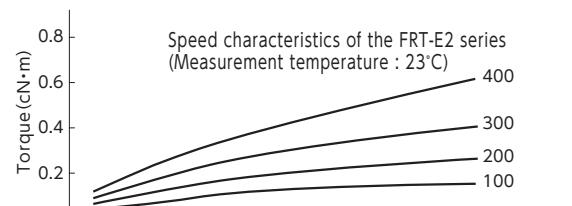
Specifications

Model	Rated torque
FRT-E2-100G1	$(1 \pm 0.5) \times 10^{-3} \text{ N}\cdot\text{m}$
FRT-E9-100G2	$10 \pm 5 \text{ gf}\cdot\text{cm}$
FRT-E2-200G1	$(2 \pm 0.7) \times 10^{-3} \text{ N}\cdot\text{m}$
FRT-E9-200G2	$20 \pm 7 \text{ gf}\cdot\text{cm}$
FRT-E2-300G1	$(3 \pm 0.8) \times 10^{-3} \text{ N}\cdot\text{m}$
FRT-E9-300G2	$30 \pm 8 \text{ gf}\cdot\text{cm}$
FRT-E2-400G1	$(4 \pm 1) \times 10^{-3} \text{ N}\cdot\text{m}$
FRT-E9-400G2	$40 \pm 10 \text{ gf}\cdot\text{cm}$

Note 1) Rated torque measured at a rotation speed of 20rpm at 23°C
Note 2) Gear model number has G1 and G2 at the end

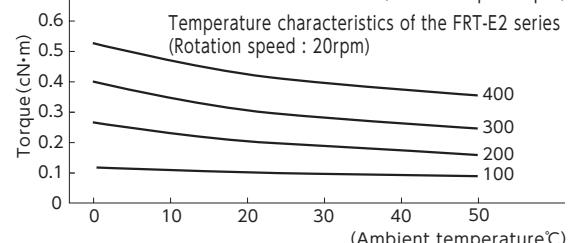
* Max. rotation speed	50rpm
* Max. cycle rate	10cycle/min
* Operating temperature	0 ~ 50°C
* Weight	FRT-E2 : with gear : 0.41g FRT-E9 : with gear : 0.38g
* Body and cap material	Polycarbonate (PC)
* Rotating shaft material	Polyacetal (POM)
* Gear material	Polyacetal (POM)
* Oil type	Silicone oil

Note 3) Torque can be customized by changing the oil viscosity (see Customizable Torque Chart on page 178)
Note 4) Model E9 is a customized product with a one-sided mounting


Gear Specifications

Model	G1 (for E2)	G2 (for E9)
Type	Standard spur gear	Standard spur gear
Tooth profile	Involute	
Module	0.6	
Pressure angle	20°	
Number of teeth	10	11
Pitch circle diameter	φ6	φ6.6

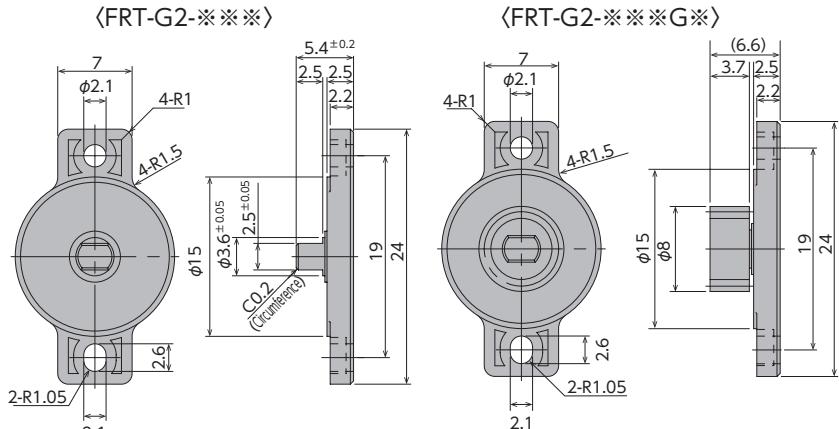
Damper Characteristics


1. Speed characteristics

A rotary damper's torque varies according to the rotation speed. In general, as shown in the graph to the right, the torque increases as the rotation speed increases, and the torque decreases as the rotation speed decreases. In addition, please note that the starting torque slightly differs from the rated torque.

2. Temperature characteristics

A rotary damper's torque varies according to the ambient temperature. In addition, as shown in the graph to the right, the torque decreases as the ambient temperature increases, and the torque increases as the ambient temperature decreases. This is because the viscosity of the silicone oil inside the damper varies according to the temperature. When the temperature returns to normal, the torque will return to normal as well.


Rotary Damper

FRT-G2 Series

Bi-Directional Uni-Directional
Fixed Type Adjustable type Self-adjusting

RoHS Compliant

● Products specification might be changed without notice.

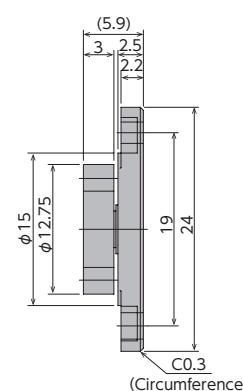
Specifications

Model	Rated torque
FRT-G2-200(G*)	$(2\pm0.7)\times10^{-3}\text{N}\cdot\text{m}$ $20\pm7\text{ gf}\cdot\text{cm}$
FRT-G2-300(G*)	$(3\pm0.8)\times10^{-3}\text{N}\cdot\text{m}$ $30\pm8\text{ gf}\cdot\text{cm}$
FRT-G2-450(G*)	$(4.5\pm1)\times10^{-3}\text{N}\cdot\text{m}$ $45\pm10\text{ gf}\cdot\text{cm}$
FRT-G2-600(G*)	$(6\pm1.2)\times10^{-3}\text{N}\cdot\text{m}$ $60\pm12\text{ gf}\cdot\text{cm}$
FRT-G2-101(G*)	$(10\pm2)\times10^{-3}\text{N}\cdot\text{m}$ $100\pm20\text{ gf}\cdot\text{cm}$

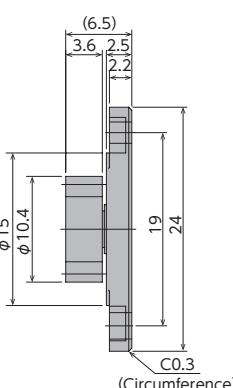
* Max. rotation speed	50rpm
* Max. cycle rate	10cycle/min
* Operating temperature	0~50°C
* Weight	0.6g (with gear : G1 : 0.8g G2 : 1.0g G3 : 0.9g)
* Body and cap material	Polycarbonate (PC)
* Rotating shaft material	Polyacetal (POM)
* Gear material	Polyacetal (POM)
* Oil type	Silicone oil

Note 1) Rated torque measured at a rotation speed of 20rpm at 23°C

Note 3) Torque can be customized by changing the oil viscosity (see Customizable Torque Chart on page 178)


Note 2) Models with gear bears G1, G2, or G3 at the end of their model numbers

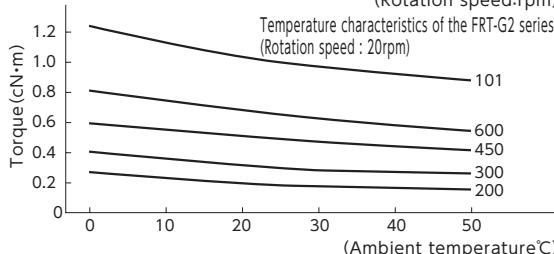
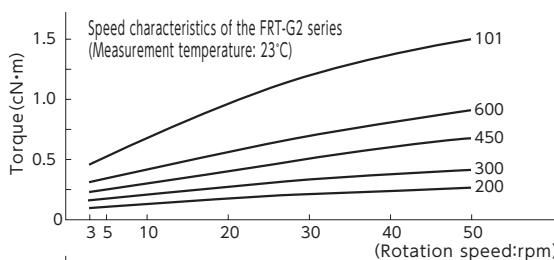
Note 4) The diagrams above are outline drawings of FRT-G2-***. Please refer to the diagrams at the right for G2 and G3.


Gear Specifications

	G1	G2	G3
Type	Standard spur gear	Profile shifted spur gear	Standard spur gear
Tooth profile	Involute		
Module	0.5	1.0	0.8
Pressure angle	20°		
Number of teeth	14	10	11
Pitch circle diameter	φ7	φ10	φ8.8
Addendum modification	-	+0.375	-

⟨FRT-G2-***G2⟩

⟨FRT-G2-***G3⟩

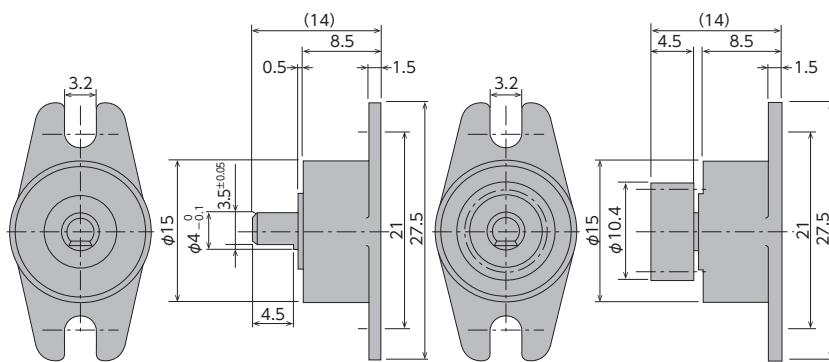


Damper Characteristics

1. Speed characteristics

A rotary damper's torque varies according to the rotation speed. In general, as shown in the graph to the right, the torque increases as the rotation speed increases, and the torque decreases as the rotation speed decreases. In addition, please note that the starting torque slightly differs from the rated torque.

2. Temperature characteristics

A rotary damper's torque varies according to the ambient temperature. In addition, as shown in the graph to the right, the torque decreases as the ambient temperature increases, and the torque increases as the ambient temperature decreases. This is because the viscosity of the silicone oil inside the damper varies according to the temperature. When the temperature returns to normal, the torque will return to normal as well.


Rotary Damper

FRT/FRN-C2 Series

Bi-Directional
Uni-Directional
Fixed Type
Adjustable type
Self-adjusting

RoHS Compliant

●Products specification might be changed without notice.

Specifications

Model	Rated torque	Damping direction
FRT-C2-201 (G1)	$(20 \pm 6) \times 10^{-3} \text{ N}\cdot\text{m}$ $200 \pm 60 \text{ gf}\cdot\text{cm}$	Both directions
FRT-C2-301 (G1)	$(30 \pm 8) \times 10^{-3} \text{ N}\cdot\text{m}$ $300 \pm 80 \text{ gf}\cdot\text{cm}$	Both directions
FRN-C2-R301 (G1)	$(30 \pm 8) \times 10^{-3} \text{ N}\cdot\text{m}$	Clockwise
FRN-C2-L301 (G1)	$300 \pm 80 \text{ gf}\cdot\text{cm}$	Counter-clockwise

Note 1) Rated torque measured at a rotation speed of 20rpm at 23°C

Note 2) Gear model number has G1 at the end

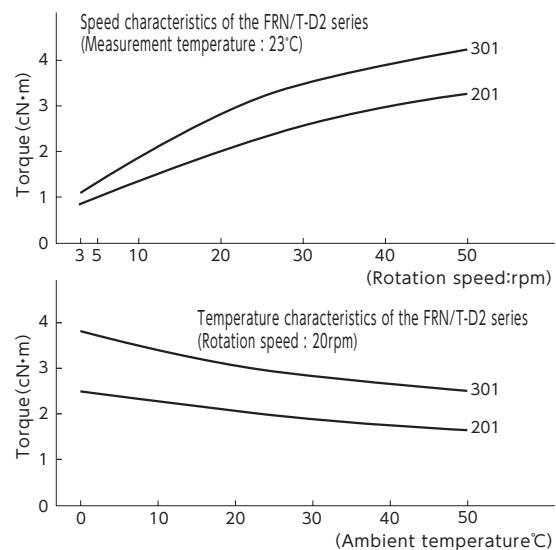
Note 3) Torque can be customized by changing the oil viscosity (see Customizable Torque Chart on page 178)

● There are dampers that generate torque in both directions and one-way torque in the CW direction or CCW direction when the rotating axle is viewed from the top.

* Max. rotation speed	50rpm
* Max. cycle rate	10cycle /min
* Operating temperature	0 ~50°C
* Weight	FRT-C2 : 2.1g (with gear : 2.4g) FRN-C2 : 3.2g (with gear : 3.5g)
* Body and cap material	Polycarbonate (PC)
* Rotating shaft material	Polyacetal (POM) metal (FRT: POM, FRN: SUS)
* Gear material	Polyacetal (POM)
* Oil type	Silicone oil

Gear Specifications

Type	Profile shifted spur gear
Tooth profile	Involute
Module	0.8
Pressure angle	20°
Number of teeth	11
Pitch circle diameter	φ8.8

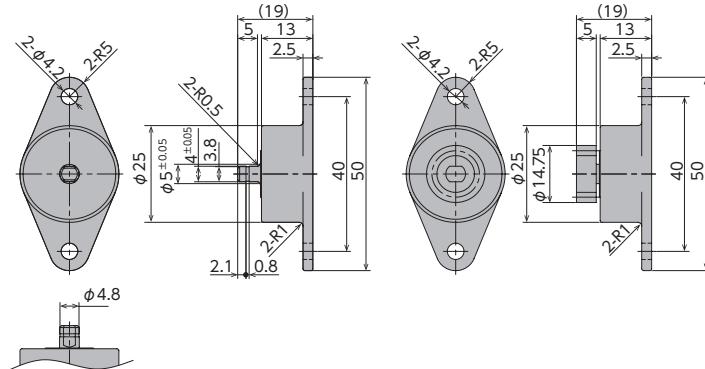

Damper Characteristics

1. Speed characteristics

A rotary damper's torque varies according to the rotation speed. In general, as shown in the graph to the right, the torque increases as the rotation speed increases, and the torque decreases as the rotation speed decreases. In addition, please note that the starting torque slightly differs from the rated torque.

2. Temperature characteristics

A rotary damper's torque varies according to the ambient temperature. In addition, as shown in the graph to the right, the torque decreases as the ambient temperature increases, and the torque increases as the ambient temperature decreases. This is because the viscosity of the silicone oil inside the damper varies according to the temperature. When the temperature returns to normal, the torque will return to normal as well.


Rotary Damper

FRT/FRN-D3 Series

Bi-Directional Uni-Directional
Fixed Type Adjustable type Self-adjusting

RoHS Compliant

● Products specification might be changed without notice.

Specifications

Model	Rated torque	Damping direction
FRT-D3-501 (G1)	$(50 \pm 10) \times 10^{-3} \text{ N}\cdot\text{m}$ $500 \pm 100 \text{ gf}\cdot\text{cm}$	Both directions
FRT-D3-102 (G1)	$(100 \pm 20) \times 10^{-3} \text{ N}\cdot\text{m}$ $1,000 \pm 200 \text{ gf}\cdot\text{cm}$	Both directions
FRT-D3-152 (G1)	$(150 \pm 30) \times 10^{-3} \text{ N}\cdot\text{m}$ $1,500 \pm 300 \text{ gf}\cdot\text{cm}$	Both directions
FRT-D3-202 (G1)	$(200 \pm 40) \times 10^{-3} \text{ N}\cdot\text{m}$ $2,000 \pm 400 \text{ gf}\cdot\text{cm}$	Both directions
FRT-D3-252 (G1)	$(250 \pm 50) \times 10^{-3} \text{ N}\cdot\text{m}$ $2,500 \pm 500 \text{ gf}\cdot\text{cm}$	Both directions
FRN-D3-R501 (G1)	$(50 \pm 10) \times 10^{-3} \text{ N}\cdot\text{m}$ $500 \pm 100 \text{ gf}\cdot\text{cm}$	Clockwise
FRN-D3-L501 (G1)	$(50 \pm 10) \times 10^{-3} \text{ N}\cdot\text{m}$ $500 \pm 100 \text{ gf}\cdot\text{cm}$	Counter-clockwise
FRN-D3-R102 (G1)	$(100 \pm 20) \times 10^{-3} \text{ N}\cdot\text{m}$ $1,000 \pm 200 \text{ gf}\cdot\text{cm}$	Clockwise
FRN-D3-L102 (G1)	$(100 \pm 20) \times 10^{-3} \text{ N}\cdot\text{m}$ $1,000 \pm 200 \text{ gf}\cdot\text{cm}$	Counter-clockwise
FRN-D3-R152 (G1)	$(150 \pm 30) \times 10^{-3} \text{ N}\cdot\text{m}$ $1,500 \pm 300 \text{ gf}\cdot\text{cm}$	Clockwise
FRN-D3-L152 (G1)	$(150 \pm 30) \times 10^{-3} \text{ N}\cdot\text{m}$ $1,500 \pm 300 \text{ gf}\cdot\text{cm}$	Counter-clockwise
FRN-D3-R202 (G1)	$(200 \pm 40) \times 10^{-3} \text{ N}\cdot\text{m}$ $2,000 \pm 400 \text{ gf}\cdot\text{cm}$	Clockwise
FRN-D3-L202 (G1)	$(200 \pm 40) \times 10^{-3} \text{ N}\cdot\text{m}$ $2,000 \pm 400 \text{ gf}\cdot\text{cm}$	Counter-clockwise
FRN-D3-R252 (G1)	$(250 \pm 50) \times 10^{-3} \text{ N}\cdot\text{m}$ $2,500 \pm 500 \text{ gf}\cdot\text{cm}$	Clockwise
FRN-D3-L252 (G1)	$(250 \pm 50) \times 10^{-3} \text{ N}\cdot\text{m}$ $2,500 \pm 500 \text{ gf}\cdot\text{cm}$	Counter-clockwise

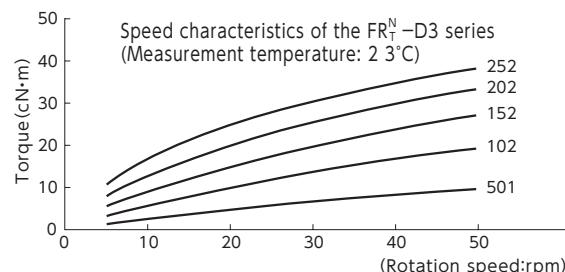
* Max. rotation speed	50rpm
* Max. cycle rate	10cycle/min
* Operating temperature	0~50°C
* Weight	FRT-D3 : 8.3g (with gear : 9g) FRN-D3 : 12.3g (with gear : 13g)
* Body and cap material	Polyacetal (POM)
* Rotating shaft material	metal (FRN : SUS)
* Gear material	Polyacetal (POM)
* Oil type	Silicone oil
* Cap color	FRT : Gray FRN(R) : Black FRN(L) : White

Gear Specifications

Type	Profile shifted spur gear
Tooth profile	Involute
Module	1.0
Pressure angle	20°
Number of teeth	12
Pitch circle diameter	φ12
Rack shift coefficient	+0.375

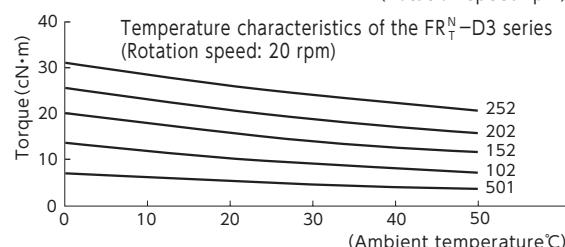
Note 1) Rated torque measured at a rotation speed of 20rpm at 23°C

Note 2) Gear model number has G1 at the end


Note 3) Torque can be customized by changing the oil viscosity (see Customizable Torque Chart on page 178)

● There are dampers that generate torque in both directions and one-way torque in the CW direction or CCW direction when the rotating axle is viewed from the top.

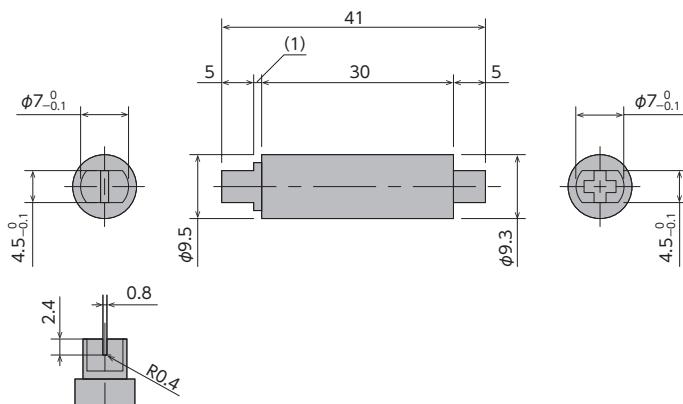
Damper Characteristics


1. Speed characteristics

A rotary damper's torque varies according to the rotation speed. In general, as shown in the graph to the right, the torque increases as the rotation speed increases, and the torque decreases as the rotation speed decreases. In addition, please note that the starting torque slightly differs from the rated torque.

2. Temperature characteristics

A rotary damper's torque varies according to the ambient temperature. In addition, as shown in the graph to the right, the torque decreases as the ambient temperature increases, and the torque increases as the ambient temperature decreases. This is because the viscosity of the silicone oil inside the damper varies according to the temperature. When the temperature returns to normal, the torque will return to normal as well.


Rotary Damper

FRT-S1 Series

Bi-Directional Uni-Directional
Fixed Type Adjustable type Self-adjusting

RoHS Compliant

●Products specification might be changed without notice.

Specifications

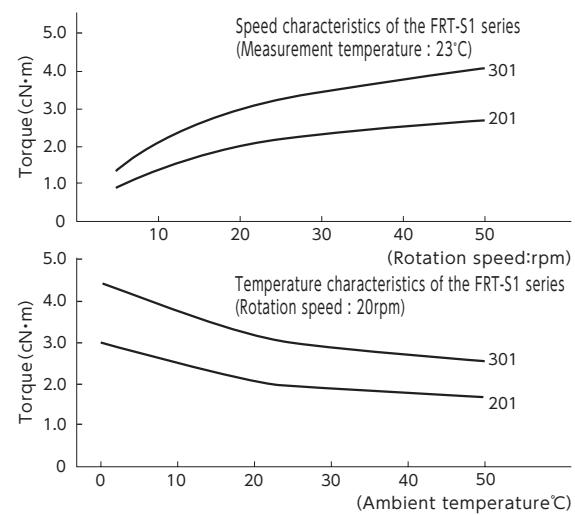
Model	Rated torque
FRT-S1-201	$(20 \pm 6) \times 10^{-3} \text{ N}\cdot\text{m}$ $200 \pm 60 \text{ gf}\cdot\text{cm}$
FRT-S1-301	$(30 \pm 8) \times 10^{-3} \text{ N}\cdot\text{m}$ $300 \pm 80 \text{ gf}\cdot\text{cm}$

Note 1) Rated torque measured at a rotational speed of 20 rpm at 23°C

Note 2) Torque can be customized by changing the oil viscosity.

(See Customizable Torque Chart on page 178.)

- * Max. rotational speed 50rpm
- * Max. cycle rate 10cycle /min
- * Operating temperature 0 ~50°C
- * Weight 3g
- * Main body material Polyacetal(POM)
- * Rotating shaft material Polyacetal(POM)
- * Oil type Silicone oil

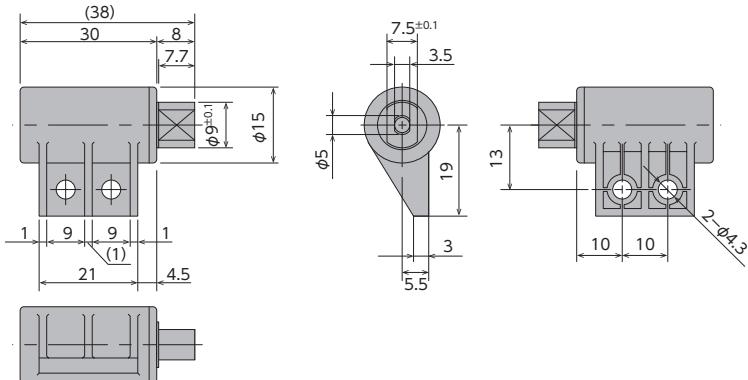

Damper Characteristics

1. Speed characteristics

A rotary damper's torque varies according to the rotation speed. In general, as shown in the graph to the right, the torque increases as the rotation speed increases, and the torque decreases as the rotation speed decreases. In addition, please note that the starting torque slightly differs from the rated torque.

2. Temperature characteristics

A rotary damper's torque varies according to the ambient temperature. In addition, as shown in the graph to the right, the torque decreases as the ambient temperature increases, and the torque increases as the ambient temperature decreases. This is because the viscosity of the silicone oil inside the damper varies according to the temperature. When the temperature returns to normal, the torque will return to normal as well.


Rotary Damper

FRT-N1 Series

Bi-Directional Uni-Directional
Fixed Type Adjustable type Self-adjusting

RoHS Compliant

●Products specification might be changed without notice.

Specifications

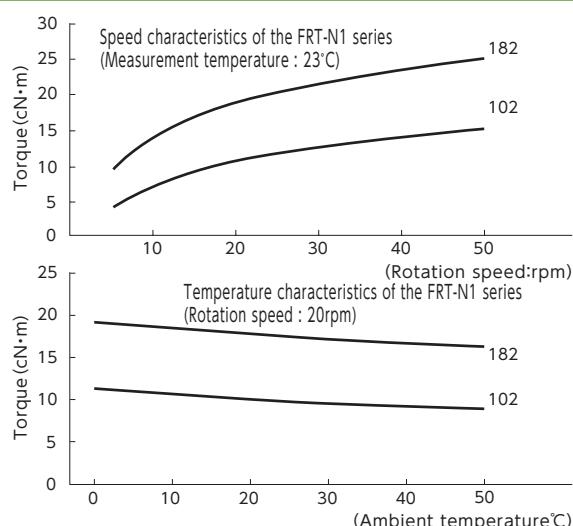
Model	Rated torque
FRT-N1-102	$(100 \pm 20) \times 10^{-3} \text{ N}\cdot\text{m}$ $1,000 \pm 200 \text{ gf}\cdot\text{cm}$
FRT-N1-182	$(180 \pm 36) \times 10^{-3} \text{ N}\cdot\text{m}$ $1,800 \pm 360 \text{ gf}\cdot\text{cm}$

Note 1) Rated torque measured at a rotational speed of 20 rpm at 23°C

Note 2) Torque can be customized by changing the oil viscosity.

(See Customizable Torque Chart on page 178.)

- * Max. rotational speed 50rpm
- * Max. cycle rate 10cycle /min
- * Operating temperature 0 ~50°C
- * Weight 8.2g
- * Main body material Polyacetal(POM)
- * Cap material Polyacetal(POM)
- * Rotating shaft material Polyacetal(POM)
- * Oil type Silicone oil

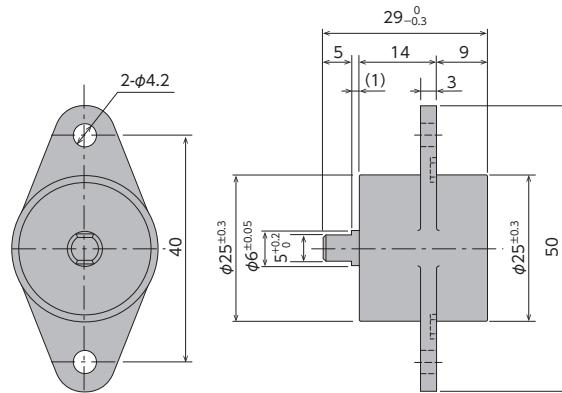

Damper Characteristics

1. Speed characteristics

A rotary damper's torque varies according to the rotation speed. In general, as shown in the graph to the right, the torque increases as the rotation speed increases, and the torque decreases as the rotation speed decreases. In addition, please note that the starting torque slightly differs from the rated torque.

2. Temperature characteristics

A rotary damper's torque varies according to the ambient temperature. In addition, as shown in the graph to the right, the torque decreases as the ambient temperature increases, and the torque increases as the ambient temperature decreases. This is because the viscosity of the silicone oil inside the damper varies according to the temperature. When the temperature returns to normal, the torque will return to normal as well.


Rotary Damper

Bi-Directional Uni-Directional
Fixed Type Adjustable type Self-adjusting

FRT-L1 Series

RoHS Compliant

●Products specification might be changed without notice.

Specifications

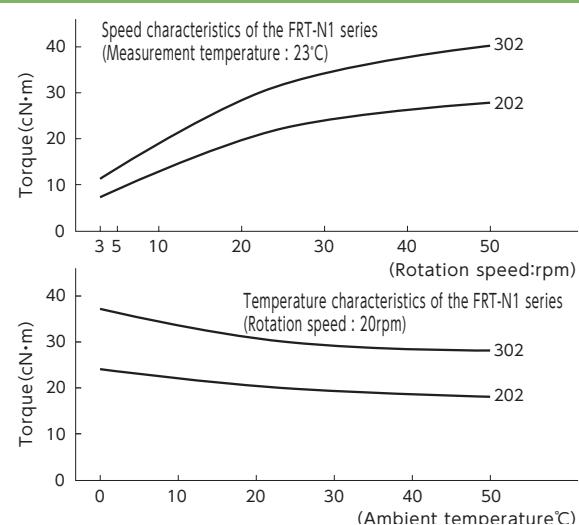
Model	Rated torque
FRT-L1-202	$(200 \pm 40) \times 10^{-3} \text{ N}\cdot\text{m}$ $2,000 \pm 400 \text{ gf}\cdot\text{cm}$
FRT-L1-302	$(300 \pm 60) \times 10^{-3} \text{ N}\cdot\text{m}$ $3,000 \pm 600 \text{ gf}\cdot\text{cm}$

Note 1) Rated torque measured at a rotational speed of 20 rpm at 23°C

Note 2) Torque can be customized by changing the oil viscosity.

(See Customizable Torque Chart on page 178.)

- *Max. rotational speed 50rpm
- *Max. cycle rate 10cycle/min
- *Operating temperature 0~50°C
- *Weight 14.1g
- *Main body material Polycarbonate (PC)
- *Rotating shaft material Polyacetal (POM)
- *Oil type Silicone oil

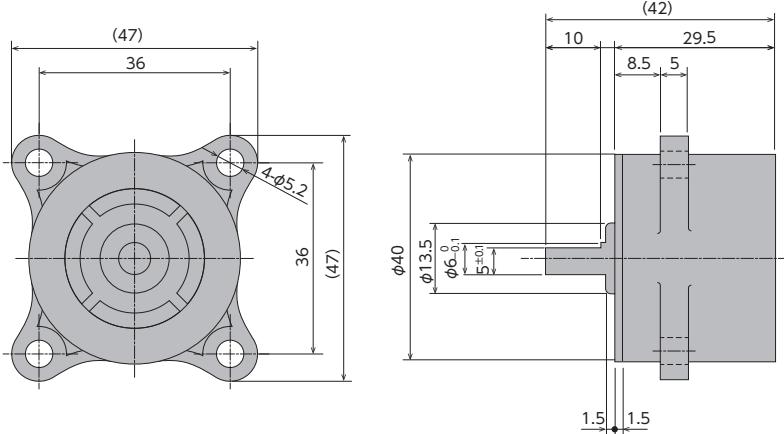

Damper Characteristics

1. Speed characteristics

A rotary damper's torque varies according to the rotation speed. In general, as shown in the graph to the right, the torque increases as the rotation speed increases, and the torque decreases as the rotation speed decreases. In addition, please note that the starting torque slightly differs from the rated torque.

2. Temperature characteristics

A rotary damper's torque varies according to the ambient temperature. In addition, as shown in the graph to the right, the torque decreases as the ambient temperature increases, and the torque increases as the ambient temperature decreases. This is because the viscosity of the silicone oil inside the damper varies according to the temperature. When the temperature returns to normal, the torque will return to normal as well.


Rotary Damper

FRT/FRN-K2 Series

Bi-Directional Uni-Directional
Fixed Type Adjustable type Self-adjusting

RoHS Compliant

● Products specification might be changed without notice.

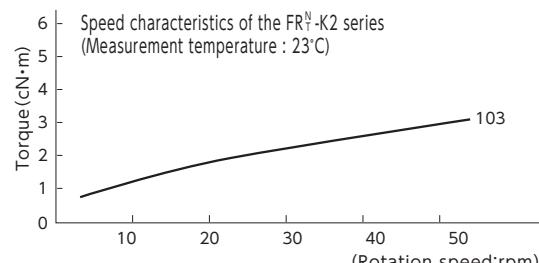
Specifications

Model	Rated torque	Damping direction
FRT-K2-103	1±0.2 N·m (10±2 kgf·cm)	Both directions
FRN-K2-R103	1±0.2 N·m (10±2 kgf·cm)	Clockwise
FRN-K2-L103		Counter-clockwise

Note 1) Rated torque measured at a rotation speed of 20rpm at 23°C

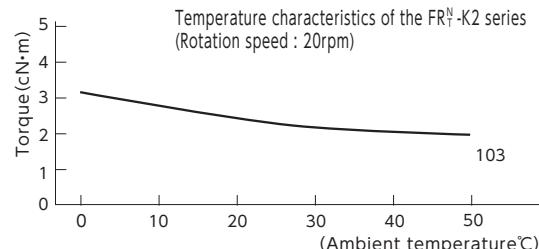
Note 2) Torque can be customized by changing the oil viscosity
(see Customizable Torque Chart on page 178)

Note 3) Dampers with gear can also be custom ordered.


● An FRT type damper generates torque in both directions and an FRN type generates one-way torque in the CW direction (R) or CCW direction (L) when the rotating axle is viewed from the top.

* Max. rotational speed	50rpm
* Max. cycle rate	10cycle /min
* Operating temperature	0 ~50°C
* Weight	FRT-K2 : 78.3g FRN-K2 : 56.6g
* Main body material	Polycarbonate + glass fiber
* Rotating shaft material	Metal (SUS)
* Oil type	Silicone oil

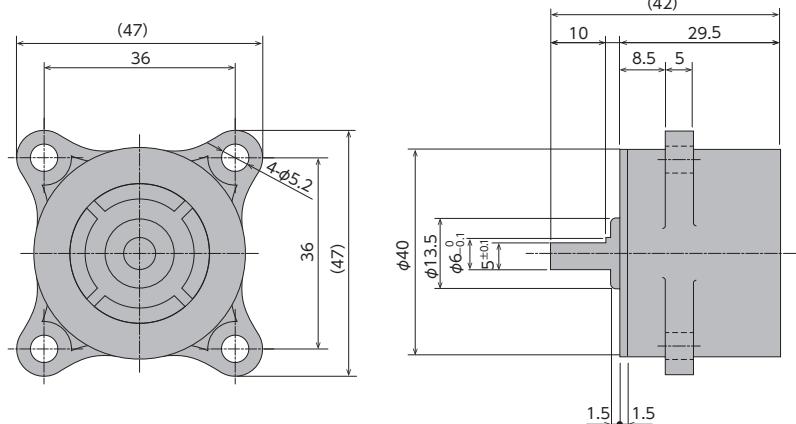
Damper Characteristics


1. Speed characteristics

A rotary damper's torque varies according to the rotation speed. In general, as shown in the graph to the right, the torque increases as the rotation speed increases, and the torque decreases as the rotation speed decreases. In addition, please note that the starting torque slightly differs from the rated torque.

2. Temperature characteristics

A rotary damper's torque varies according to the ambient temperature. In addition, as shown in the graph to the right, the torque decreases as the ambient temperature increases, and the torque increases as the ambient temperature decreases. This is because the viscosity of the silicone oil inside the damper varies according to the temperature. When the temperature returns to normal, the torque will return to normal as well.


Rotary Damper

FRT/FRN-F2 Series

Bi-Directional Uni-Directional
 Fixed Type Adjustable type Self-adjusting

RoHS Compliant

● Products specification might be changed without notice.

Specifications

Model	Rated torque	Damping direction
FRT-F2-203	2±0.4 N·m (20±4 kgf·cm)	Both directions
FRT-F2-303	3±0.8 N·m (30±8 kgf·cm)	Both directions
FRT-F2-403	4±1 N·m (40±10 kgf·cm)	Both directions
FRN-F2-R203	2±0.4 N·m (20±4 kgf·cm)	Clockwise
FRN-F2-L203		Counter-clockwise

* Max. rotational speed	50rpm
* Max. cycle rate	10cycle /min
* Operating temperature	0 ~50°C
* Weight	FRT-K2 : 115.6g FRN-K2 : 93.2g
* Main body material	Polycarbonate + glass fiber
* Rotating shaft material	Metal (SUS)
* Oil type	Silicone oil

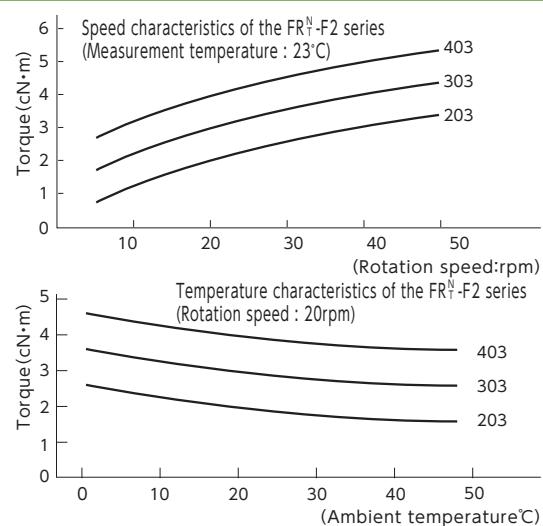
Note 1) Rated torque measured at a rotation speed of 20rpm at 23°C

Note 2) Torque can be customized by changing the oil viscosity

(see Customizable Torque Chart on page 178)

Note 3) Dampers with gear can also be custom ordered.

- An FRT type damper generates torque in both directions and an FRN type generates one-way torque in the CW direction (R) or CCW direction (L) when the rotating axle is viewed from the top.


Damper Characteristics

1. Speed characteristics

A rotary damper's torque varies according to the rotation speed. In general, as shown in the graph to the right, the torque increases as the rotation speed increases, and the torque decreases as the rotation speed decreases. In addition, please note that the starting torque slightly differs from the rated torque.

2. Temperature characteristics

A rotary damper's torque varies according to the ambient temperature. In addition, as shown in the graph to the right, the torque decreases as the ambient temperature increases, and the torque increases as the ambient temperature decreases. This is because the viscosity of the silicone oil inside the damper varies according to the temperature. When the temperature returns to normal, the torque will return to normal as well.

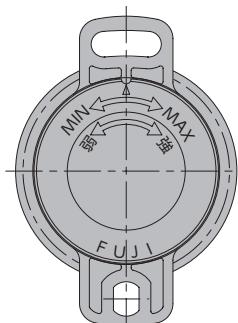
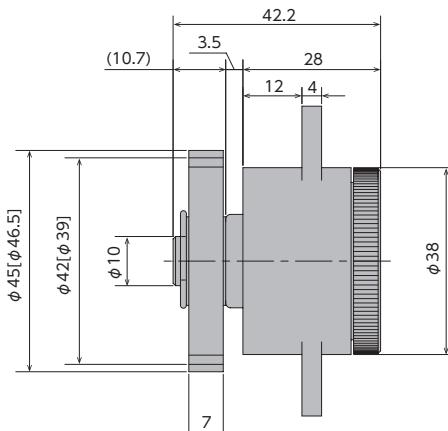
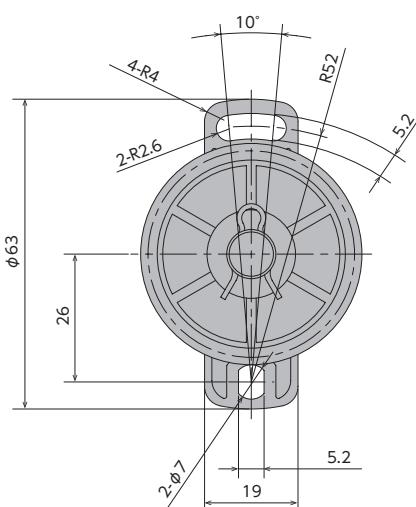
MEMO

Rotary Damper

FRN-P2 Series(Adjustable Types: Variable Torque Models)

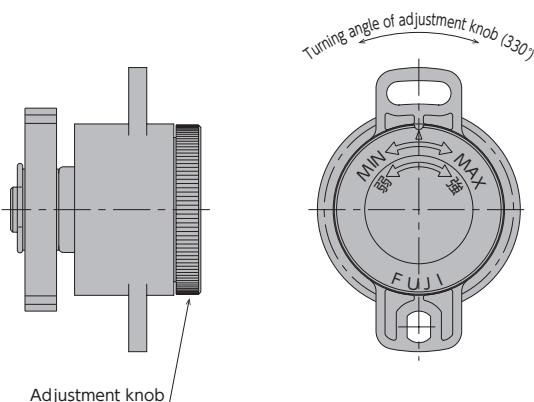
* Max. rotation speed	50rpm
* Max. cycle rate	10cycle/min
* Operating temperature	0~50°C
* Weight	64g
* Body and cap material	PBT
* Rotating shaft material	SUS
* Gear, adjustment knob	POM
* Oil type	Silicone oil

Specifications

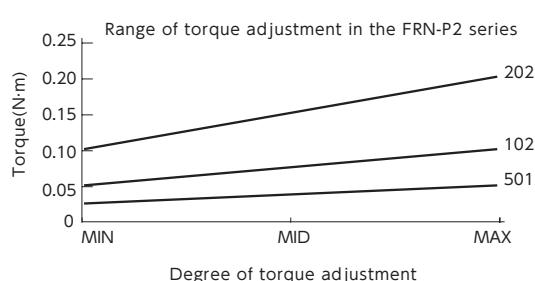



Model	Rated torque	Damping direction
FRN-P2-R501G*	0.05±0.01 N·m (0.5±0.1 kgf·cm)	Clockwise direction
FRN-P2-L501G*		Counter-clockwise direction
FRN-P2-R102G*	0.10±0.02 N·m (1.0±0.2 kgf·cm)	Clockwise direction
FRN-P2-L102G*		Counter-clockwise direction
FRN-P2-R202G*	0.20±0.04 N·m (2.0±0.4 kgf·cm)	Clockwise direction
FRN-P2-L202G*		Counter-clockwise direction

Note 1) Rated torque is measured at a rotation speed of 20rpm at 23°C (adjustment knob set at MAX)

● There are dampers that generate torque in the CW direction or CCW direction when the rotating axle is viewed from the top.


Gear Specifications

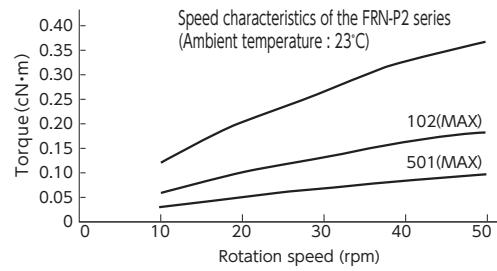
Model	G1	*G2
Type	Standard spur gear	Shifted spur gear
Tooth profile		Involute
Module	1.5	3.0
Pressure angle		20°
Number of teeth	28	13
Pitch circle diameter	φ42	φ39
Addendum modification coefficient	–	+0.25


Dimensions of G2 gear are in []

How to Adjust Torque

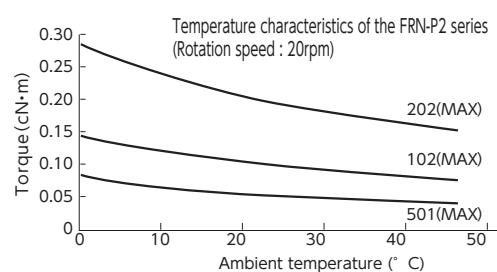
Turn the adjustment knob clockwise to increase damper torque and counter-clockwise to decrease it.

Range of Torque Adjustment

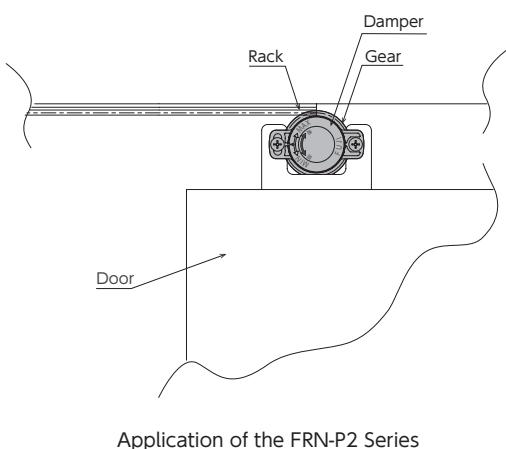


●Products specification might be changed without notice.

Characteristics


1. Speed characteristics

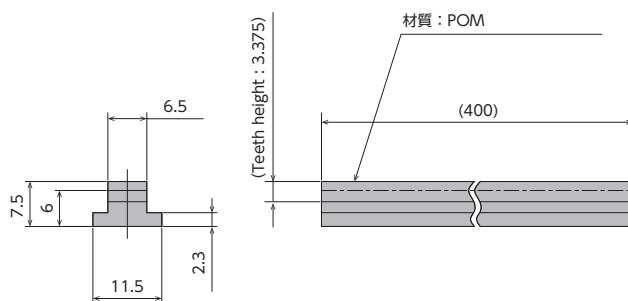
A rotary damper's torque varies according to the rotation speed. In general, as shown in the graph to the right, the torque increases as the rotation speed increases, and the torque decreases as the rotation speed decreases. In addition, please note that the starting torque slightly differs from the rated torque.



2. Temperature characteristics

A rotary damper's torque varies according to the ambient temperature. In addition, as shown in the graph to the right, the torque decreases as the ambient temperature increases, and the torque increases as the ambient temperature decreases. This is because the viscosity of the silicone oil inside the damper varies according to the temperature. When the temperature returns to normal, the torque will return to normal as well.

Example of Using a Damper



Option Rack

G1 Rack : ROP-020P2-1

Applicable Models	Model
FRN-P2	ROP-020P2-1

Rack specifications : $m=1.5$
Pressure angle 20° (full depth tooth)
 $Z=85$

There is no provision for option racks complying with the gear specification G2 (shifted spur gear) of FRN-P2

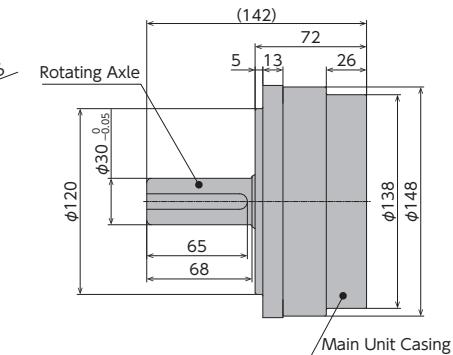
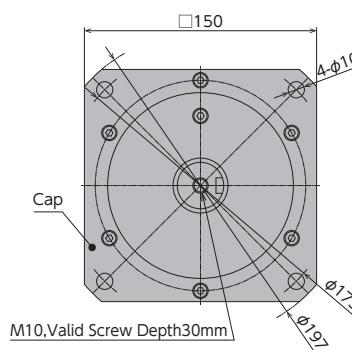
Rotary Damper

FRT-W1

Customized orders

Fixed Type

Bi-Directional



Adjustable type

Uni-Directional

Self-adjusting

RoHS Compliant

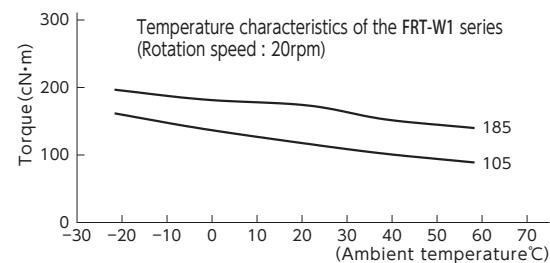
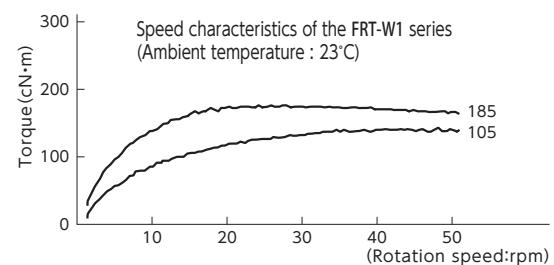
●Products specification might be changed without notice.

Specifications

Model	Rated torque	Damping direction
FRT-W1-105	100±20N·m	Both directions
FRT-W1-185	180±40N·m	Both directions

Note 1) Rated torque measured at a rotation speed of 20rpm at 23°C

* Max. rotation speed	50rpm
* Max. cycle rate	1.5cycle /min
* Operating temperature	-20 ~60°C
* Weight	6Kg
* Main body material	SUS304
* Cap material	A2017
* Rotating (shaft) material	SUS420
* Oil type	Silicone oil



Damper Characteristics

1. Speed characteristics

A rotary damper's torque varies according to the rotation speed. In general, as shown in the graph to the right, the torque increases as the rotation speed increases, and the torque decreases as the rotation speed decreases. In addition, please note that the starting torque slightly differs from the rated torque.

2. Temperature characteristics

A rotary damper's torque varies according to the ambient temperature. In addition, as shown in the graph to the right, the torque decreases as the ambient temperature increases, and the torque increases as the ambient temperature decreases. This is because the viscosity of the silicone oil inside the damper varies according to the temperature. When the temperature returns to normal, the torque will return to normal as well.

MEMO

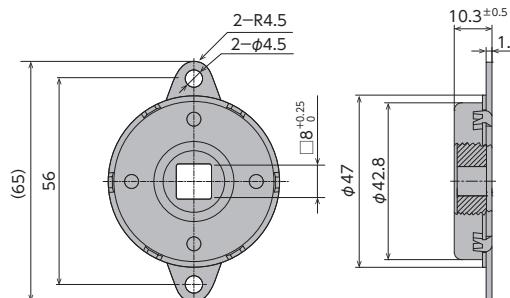
Disk Damper

FDT-47A/FDN-47A Series

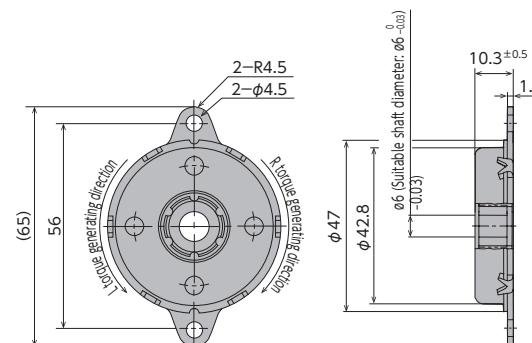
Bi-Directional
Uni-Directional
Fixed Type
Adjustable type
Self-adjusting

RoHS Compliant

●Products specification might be changed without notice.

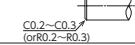


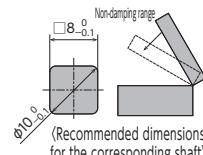
- * Max. rotation speed 50rpm
- * Max. cycle rate 12cycle /min
- * Operating temperature -10~50°C
- * Weight FDT- 47A : 50g
FDN- 47A : 55g
- * Main body material Iron (SPFC)
- * Rotating (shaft) material Nylon (with glass)
- * Oil type! Silicone oil


Specifications

Model	Rated torque	Damping direction
FDT-47A-502	0.5±0.15 N·m (5±1.5 kgf·cm)	Both directions
FDT-47A-103	1±0.2 N·m (10±2 kgf·cm)	Both directions
FDT-47A-163	1.6±0.3 N·m (16±3 kgf·cm)	Both directions
FDT-47A-203	2±0.3 N·m (20±3 kgf·cm)	Both directions
FDN-47A-R502	0.5±0.15 N·m (5±1.5 kgf·cm)	Clockwise direction
FDN-47A-L502		Counter-clockwise direction
FDN-47A-R103	1±0.2 N·m (10±2 kgf·cm)	Clockwise direction
FDN-47A-L103		Counter-clockwise direction
FDN-47A-R163	1.6±0.3 N·m (16±3 kgf·cm)	Clockwise direction
FDN-47A-L163		Counter-clockwise direction
FDN-47A-R203	2±0.3 N·m (20±3 kgf·cm)	Clockwise direction
FDN-47A-L203		Counter-clockwise direction

Note) Rated torque is measured at a rotation speed of 20rpm at 23°C±3°C

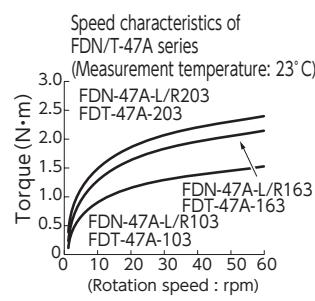

<FDT-47A-***>



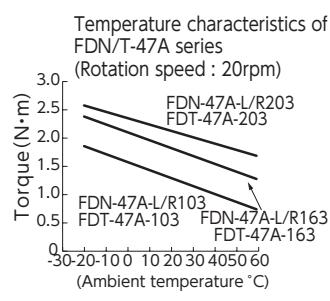
<FDN-47A-R/L***>

How to Use the Damper

1. Dampers may generate torque in both directions, clockwise, or counter-clockwise.
2. Please make sure that a shaft attached to a damper has a bearing, as the damper itself is not fitted with one.
3. Please refer to the recommended dimensions below when creating a shaft for FDN-47A. Not using the recommended shaft dimensions may cause the shaft to slip out.
4. To insert a shaft into FDN-47A, insert the shaft while spinning it in the idling direction of the one-way clutch. (Do not force the shaft in from the regular direction. This may damage the oneway clutch.)
5. When using FDT-47A, please ensure that a shaft with specified angular dimensions is inserted in the damper's shaft opening. A wobbling shaft and damper shaft may not allow the lid to slow down properly when closing. Please see the diagrams to the right for the recommended shaft dimensions for a damper.
6. Please contact us when a continuous rotation is planned.


Shaft's external dimensions	$\phi 6_{-0.03}$
Surface hardness	HRC55 or higher
Quenching depth	0.5mm or higher
Surface roughness	1.0Z or lower
Chamfer end (Damper insertion side)	

Damper Characteristics


1. Speed characteristics

A disk damper's torque varies according to the rotation speed. In general, as shown in the graph to the right, the torque increases as the rotation speed increases, and the torque decreases as the rotation speed decreases. Torque at 20rpm is shown in this catalogue. In a closing lid, the rotation speed is slow when the lid begins to close, resulting in the generation of torque that is smaller than the rated torque.

2. Temperature characteristics

Damper torque (rated torque in this catalogue) varies according to the ambient temperature. As the temperature increases, the torque decreases, and as the temperature decreases, the torque increases. This is because the viscosity of the silicone oil inside the damper varies according to the temperature. The graph to the right illustrates the temperature characteristics.

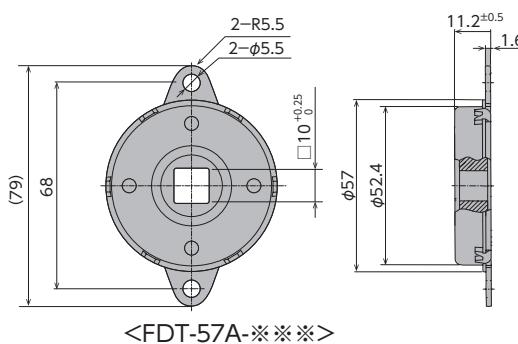
Disk Damper

FDT-57A/FDN-57A Series

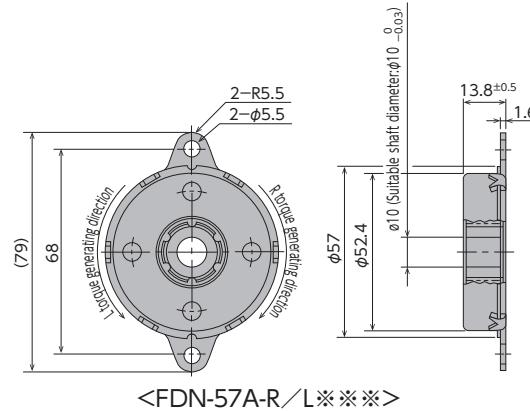
Bi-Directional Uni-Directional
Fixed Type Adjustable type Self-adjusting

RoHS Compliant

● Products specification might be changed without notice.



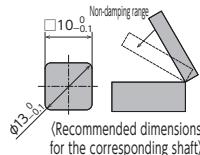
* Max. rotation speed	50rpm
* Max. cycle rate	12cycle /min
* Operating temperature	-10~50°C
* Weight	FDT-57A : 75g FDN-57A : 94g
* Main body material	Iron (SPFC)
* Rotating (shaft) material	Nylon (with glass)
* Oil type	Silicone oil


Specifications

Model	Rated torque	Damping direction
FDT-57A-303	$3 \pm 0.4 \text{ N}\cdot\text{m}$ ($30 \pm 4 \text{ kgf}\cdot\text{cm}$)	Both directions
FDT-57A-403	$4 \pm 0.5 \text{ N}\cdot\text{m}$ ($40 \pm 5 \text{ kgf}\cdot\text{cm}$)	Both directions
FDT-57A-503	$4.7 \pm 0.5 \text{ N}\cdot\text{m}$ ($47 \pm 5 \text{ kgf}\cdot\text{cm}$)	Both directions
FDN-57A-R303	$3 \pm 0.4 \text{ N}\cdot\text{m}$ ($30 \pm 4 \text{ kgf}\cdot\text{cm}$)	Clockwise direction
FDN-57A-L303	$3 \pm 0.4 \text{ N}\cdot\text{m}$ ($30 \pm 4 \text{ kgf}\cdot\text{cm}$)	Counter-clockwise direction
FDN-57A-R403	$4 \pm 0.5 \text{ N}\cdot\text{m}$ ($40 \pm 5 \text{ kgf}\cdot\text{cm}$)	Clockwise direction
FDN-57A-L403	$4 \pm 0.5 \text{ N}\cdot\text{m}$ ($40 \pm 5 \text{ kgf}\cdot\text{cm}$)	Counter-clockwise direction
FDN-57A-R553	$5.5 \pm 0.6 \text{ N}\cdot\text{m}$ ($55 \pm 6 \text{ kgf}\cdot\text{cm}$)	Clockwise direction
FDN-57A-L553	$5.5 \pm 0.6 \text{ N}\cdot\text{m}$ ($55 \pm 6 \text{ kgf}\cdot\text{cm}$)	Counter-clockwise direction

Note) Rated torque is measured at a rotation speed of 20rpm at $23^\circ\text{C} \pm 3^\circ\text{C}$

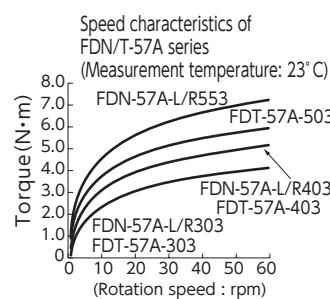
<FDT-57A-***>


<FDN-57A-R/L***>

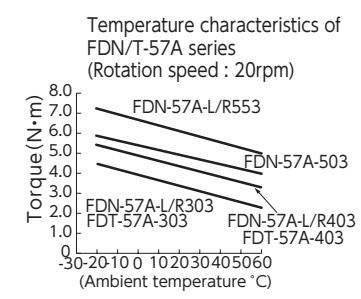
How to Use the Damper

1. Dampers may generate torque in both directions, clockwise, or counter-clockwise.
2. Please make sure that a shaft attached to a damper has a bearing, as the damper itself is not fitted with one.
3. Please refer to the recommended dimensions below when creating a shaft for FDN-57A. Not using the recommended shaft dimensions may cause the shaft to slip out.

Shaft's external dimensions	$\phi 10_{-0.03}^0$
Surface hardness	HRC55 or higher
Quenching depth	0.5mm or higher
Surface roughness	1.0Z or lower
Chamfer end (Damper insertion side)	


4. To insert a shaft into FDN-57A, insert the shaft while spinning it in the idling direction of the one-way clutch. (Do not force the shaft in from the regular direction. This may damage the oneway clutch.)
5. When using FDT-57A, please ensure that a shaft with specified angular dimensions is inserted in the damper's shaft opening. A wobbling shaft and damper shaft may not allow the lid to slow down properly when closing. Please see the diagrams to the right for the recommended shaft dimensions for a damper.
6. Please contact us when a continuous rotation is planned.

Damper Characteristics


① Speed characteristics

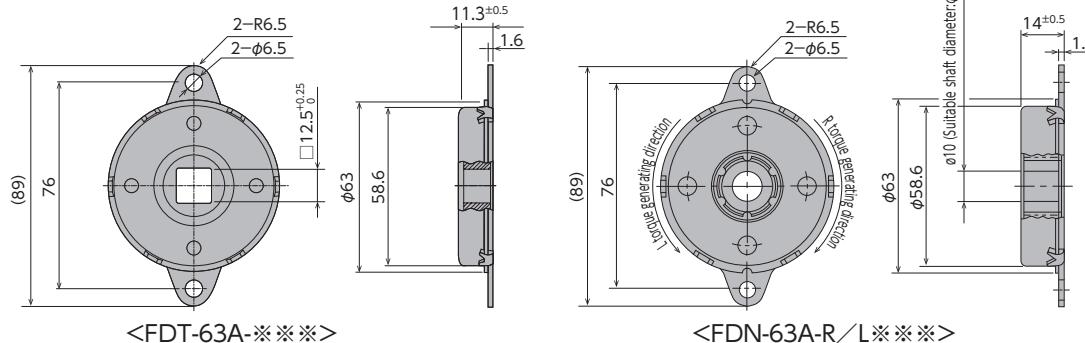
A disk damper's torque varies according to the rotation speed. In general, as shown in the graph to the right, the torque increases as the rotation speed increases, and the torque decreases as the rotation speed decreases. Torque at 20rpm is shown in this catalogue. In a closing lid, the rotation speed is slow when the lid begins to close, resulting in the generation of torque that is smaller than the rated torque.

② Temperature characteristics

Damper torque (rated torque in this catalogue) varies according to the ambient temperature. As the temperature increases, the torque decreases, and as the temperature decreases, the torque increases. This is because the viscosity of the silicone oil inside the damper varies according to the temperature. The graph to the right illustrates the temperature characteristics.

Disk Damper

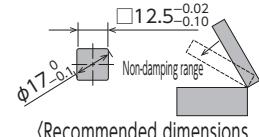
FDT-63A/FDN-63A Series


Bi-Directional
Uni-Directional
Fixed Type
Adjustable type
Self-adjusting

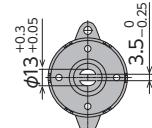
RoHS Compliant

●Products specification might be changed without notice.

* Max. rotation speed	50rpm
* Max. cycle rate	12cycle /min
* Operating temperature	-10~50°C
* Weight	FDT-63A : 92g FDN-63A : 115g
* Main body material	Iron (SPFC)
* Rotating (shaft) material	Nylon (with glass)
* Oil type	Silicone oil


How to Use the Damper

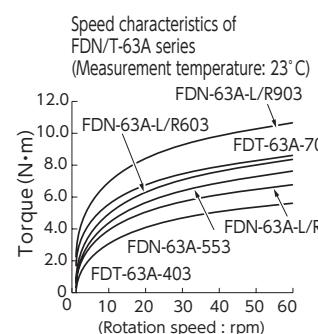
1. Dampers may generate torque in both directions, clockwise, or counter-clockwise.
2. Please make sure that a shaft attached to a damper has a bearing, as the damper itself is not fitted with one.
3. Please refer to the recommended dimensions below when creating a shaft for FDN-63A. Not using the recommended shaft dimensions may cause the shaft to slip out.
4. To insert a shaft into FDN-63A, insert the shaft while spinning it in the idling direction of the one-way clutch. (Do not force the shaft in)


Shaft's external dimensions	$\phi 10_{-0.03}$
Surface hardness	HRC55 or higher
Quenching depth	0.5mm or higher
Surface roughness	1.0Z or lower
Chamfer end (Damper insertion side)	$C0.2 \sim C0.3$ (or $R0.2 \sim R0.3$)

from the regular direction. This may damage the one-way clutch.)

5. When using FDT-63A, please ensure that a shaft with specified angular dimensions is inserted in the damper's shaft opening. A wobbling shaft and damper shaft may not allow the lid to slow down properly when closing. Please see the diagrams to the right for the recommended shaft dimensions for a damper.
6. A damper shaft connecting to a part with slotted groove is also available. The slotted groove type is excellent for usage with spiral springs
7. Please contact us when a continuous rotation is planned.

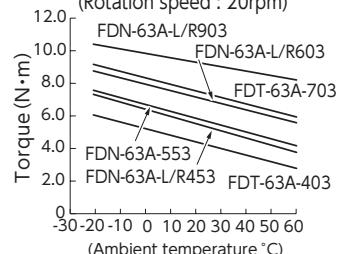
(Recommended dimensions for the corresponding shaft)



(FDT-63B-703)

Damper Characteristics

1. Speed characteristics


A disk damper's torque varies according to the rotation speed. In general, as shown in the graph to the right, the torque increases as the rotation speed increases, and the torque decreases as the rotation speed decreases. Torque at 20rpm is shown in this catalogue. In a closing lid, the rotation speed is slow when the lid begins to close, resulting in the generation of torque that is smaller than the rated torque.

2. Temperature characteristics

Damper torque (rated torque in this catalogue) varies according to the ambient temperature. As the temperature increases, the torque decreases, and as the temperature decreases, the torque increases. This is because the viscosity of the silicone oil inside the damper varies according to the temperature. The graph to the right illustrates the temperature characteristics

Temperature characteristics of FDN/T-63A series (Rotation speed : 20rpm)

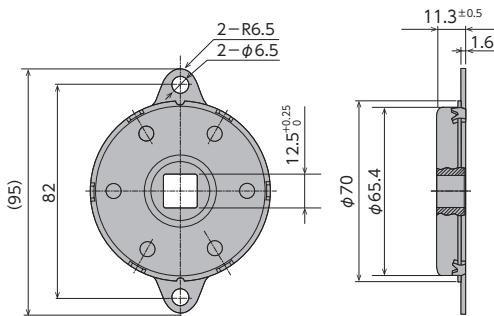
Disk Damper

FDT-70A/FDN-70A Series

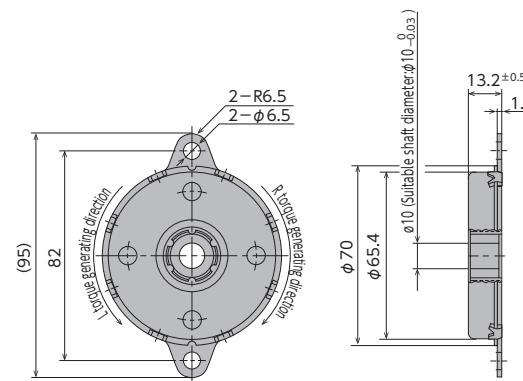
Bi-Directional Uni-Directional
Fixed Type Adjustable type Self-adjusting

RoHS Compliant

● Products specification might be changed without notice.



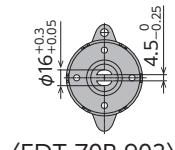
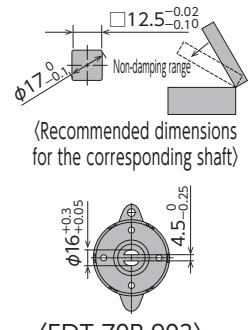
- * Max. rotation speed 50rpm
- * Max. cycle rate 12cycle /min
- * Operating temperature -10~50°C
- * Weight FDT-70A : 112g
FDN-70A : 136g
- * Main body material Iron (SPFC)
- * Rotating (shaft) material Nylon (with glass)
- * Oil type! Silicone oil


Specifications

Model	Rated torque	Damping direction
FDT-70A-903	8.7±0.8 N·m (87±8 kgf·cm)	Both directions
FDN-70A-R114	11±1.1 N·m (110±11 kgf·cm)	Clockwise direction
FDN-70A-L114		Counter-clockwise direction

Note) Rated torque is measured at a rotation speed of 20rpm at 23°C±3°C
70B has a slotted rotating shaft opening

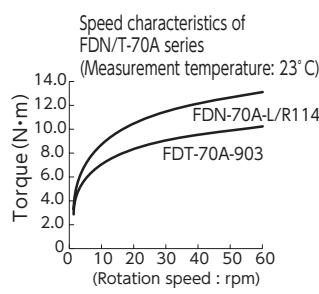
<FDT-70A-903>



<FDN-70A-R/L114>

How to Use the Damper

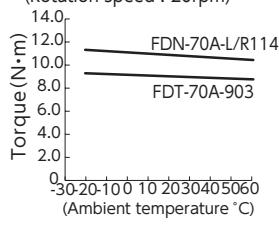
1. Dampers may generate torque in both directions, clockwise, or counter-clockwise.
2. Please make sure that a shaft attached to a damper has a bearing, as the damper itself is not fitted with one.
3. Please refer to the recommended dimensions below when creating a shaft for FDN-70A. Not using the recommended shaft dimensions may cause the shaft to slip out.
4. To insert a shaft into FDN-70A, insert the shaft while spinning it in the idling direction of the one-way clutch.
(Do not force the shaft in)

Shaft's external dimensions	φ 10 _{-0.03}
Surface hardness	HRC55 or higher
Quenching depth	0.5mm or higher
Surface roughness	1.0Z or lower
Chamfer end (Damper insertion side)	


5. When using FDT-70A, please ensure that a shaft with specified angular dimensions is inserted in the damper's shaft opening. A wobbling shaft and damper shaft may not allow the lid to slow down properly when closing. Please see the diagrams to the right for the recommended shaft dimensions for a damper.
6. A damper shaft connecting to a part with slotted groove is also available. The slotted groove type is excellent for usage with spiral springs
7. Please contact us when a continuous rotation is planned.

Damper Characteristics

1. Speed characteristics


A disk damper's torque varies according to the rotation speed. In general, as shown in the graph to the right, the torque increases as the rotation speed increases, and the torque decreases as the rotation speed decreases. Torque at 20rpm is shown in this catalogue. In a closing lid, the rotation speed is slow when the lid begins to close, resulting in the generation of torque that is smaller than the rated torque.

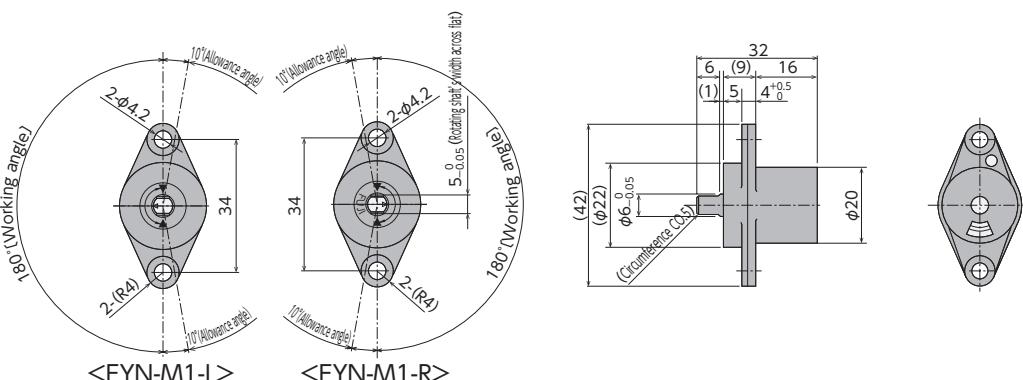
2. Temperature characteristics

Damper torque (rated torque in this catalogue) varies according to the ambient temperature. As the temperature increases, the torque decreases, and as the temperature decreases, the torque increases. This is because the viscosity of the silicone oil inside the damper varies according to the temperature. The graph to the right illustrates the temperature characteristics.

Temperature characteristics of FDN/T-70A series
(Rotation speed : 20rpm)

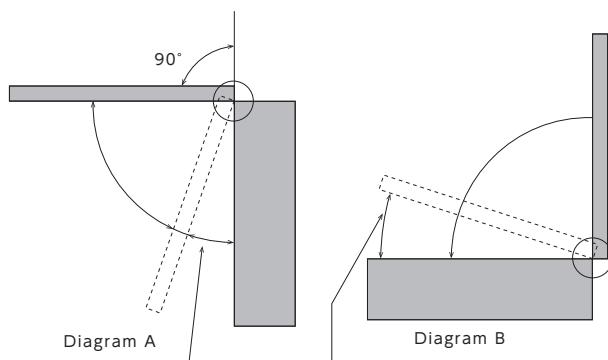
Vane Damper

FYN-M1 Series


* Max. angle	180°
* Max. cycle rate	6cycle / min
* Operating temperature	-5~50°C
* Weight	17±2g
* Main body	Polybutylene terephthalate (PBT)
* Cap material	Polybutylene terephthalate (PBT)

Specifications

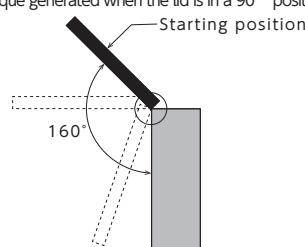
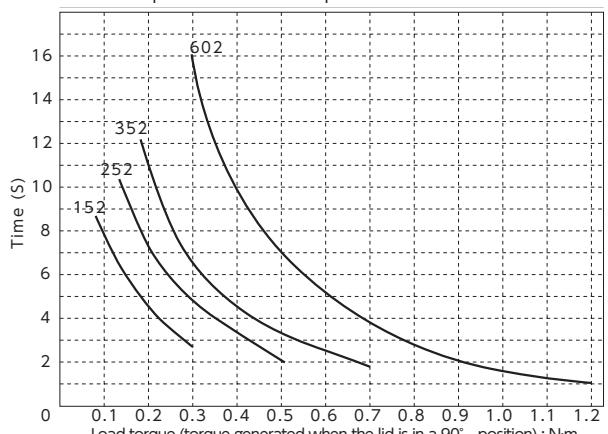
Model	Max. torque	Reverse torque	Damping direction
FYN-M1-R152	0.15 N·m (1.5 kgf·cm)	0.1 N·m or lower (1kgf·cm or lower)	Clockwise
FYN-M1-L152			Counter-clockwise
FYN-M1-R252	0.25 N·m (2.5 kgf·cm)	0.2 N·m or lower (2 kgf·cm or lower)	Clockwise
FYN-M1-L252			Counter-clockwise
FYN-M1-R352	0.35 N·m (3.5 kgf·cm)	0.2 N·m or lower (2 kgf·cm or lower)	Clockwise
FYN-M1-L352			Counter-clockwise
FYN-M1-R602	0.60 N·m (6.0kgf·cm)	0.4 N·m or lower (4 kgf·cm or lower)	Clockwise
FYN-M1-L602			Counter-clockwise


Note) Measured at 23°C±2°C

* Rotating shaft material	Zinc die-cast (ZDC)
* Oil type	Silicone oil
* Cap colour	R: Black L: Gray

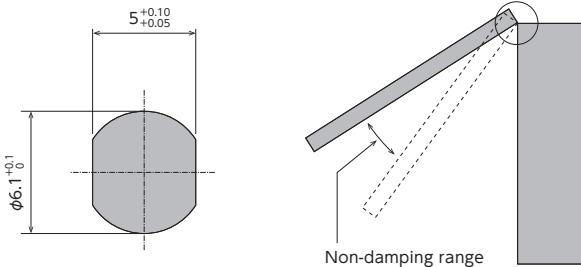
How to Use the Damper

1. The FYN-M1 Series is designed to generate a large torque up to 90° in a closing lid, as shown in Diagram A, and the lid is able to close completely. However, when the lid is closed from a vertical position, as shown in Diagram B, the lid cannot be slowed down, as the torque becomes small just before the lid is completely closed.

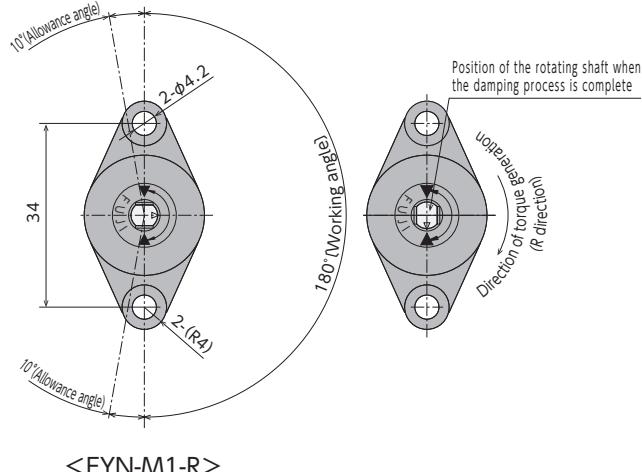



The damper torque becomes smaller, allowing the lid to close completely.

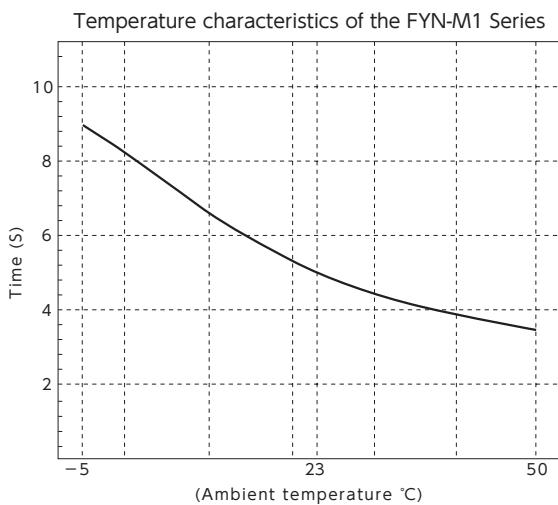
The damper torque becomes smaller, preventing the lid from slowing down.


2. Below is a graph showing the relationship between the load torque and the time when a lid is closed from a 160° angle, as shown in the diagram.

Relationship between load torque and time in the FYN-M1 serie


●Products specification might be changed without notice.

3. When connecting the rotating shaft to other parts, please ensure a tight fit between them. Without a tight fit, the lid will not slow down properly when closing.


<Recommended dimensions for a rotating shaft opening>

5. The standard for a damper's working angle is 180° with respect to the main body's attachment flange. Rotating the damper beyond this angle will cause damage to the damper. Please make sure that an external stopper is in place.

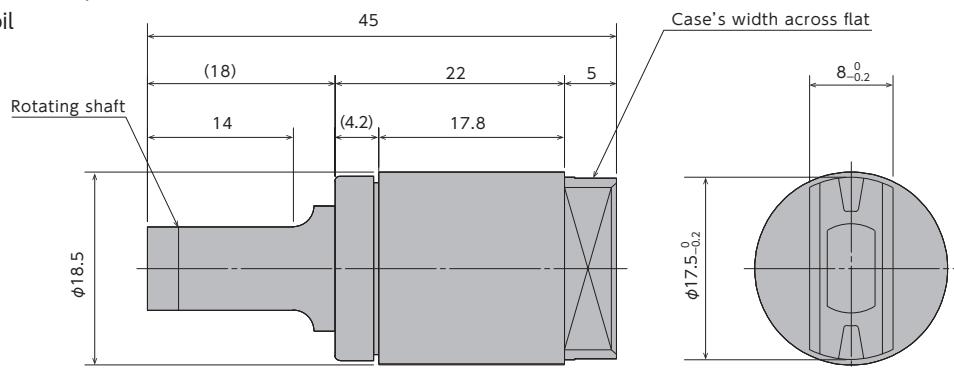
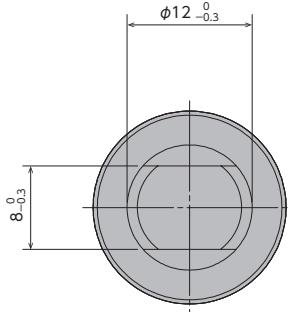
<FYN-M1-R>

4. The time it takes for a lid with a damper to close varies according to the ambient temperature. As the temperature increases, it takes less time, and as the temperature decreases, it will take longer for the lid to close. This is because the viscosity of the oil inside the damper changes according to the temperature. When the temperature returns to normal, the required time will return to normal as well. The temperature characteristics are shown in the graph below.

6. The direction in which torque is generated varies according to the model. Please select the appropriate model for your purpose.

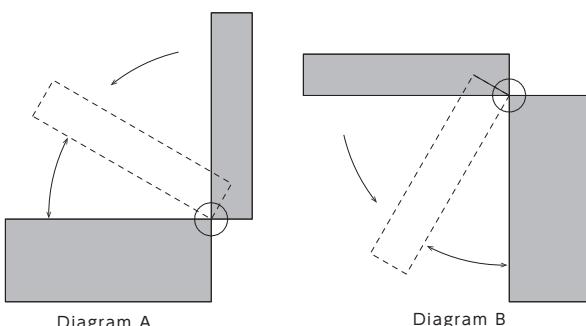
Vane Damper

FYN-P1 Series

Specifications

Model	Max. torque	Reverse torque	Damping direction
FYN-P1-R103	1 N·m (10 kgf·cm)	0.3 N·m or lower (3 kgf·cm or lower)	Clockwise
FYN-P1-L103			Counter-clockwise
FYN-P1-R153	1.5 N·m (15 kgf·cm)	0.5 N·m or lower (5 kgf·cm or lower)	Clockwise
FYN-P1-L153			Counter-clockwise
FYN-P1-R183	1.8 N·m (18 kgf·cm)	0.8 N·m or lower (8 kgf·cm or lower)	Clockwise
FYN-P1-L183			Counter-clockwise


Note) Measured at 23°C±2°C

* Max. angle	115°
* Operating temperature	-5~50°C
* Weight	10.5±1g
* Body and cap material	Polybutylene terephthalate (PBT)
* Rotating shaft material	Polybutylene terephthalate (PBT)
* Oil type	Silicone oil

How to Use the Damper

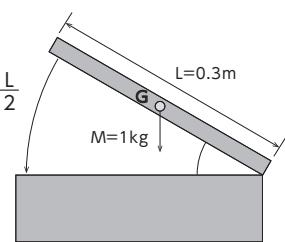
1. FYN-P1 is designed to generate a large torque just before a lid closing from a vertical position, as shown in Diagram A, comes to a full closure. When a lid is closed from a horizontal position, as shown in Diagram B, a strong torque is generated just before the lid is fully closed, causing the lid to not close properly.

The damper torque becomes larger, preventing the lid from slowing down.

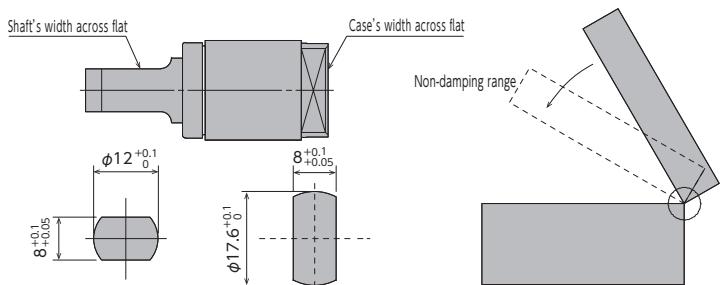
The damper torque becomes larger, preventing the lid from closing completely.

2. When using a damper on a lid, such as the one shown in the diagram, use the following selection calculation to determine the damper torque. Example)

Lid mass M: 0.3kg

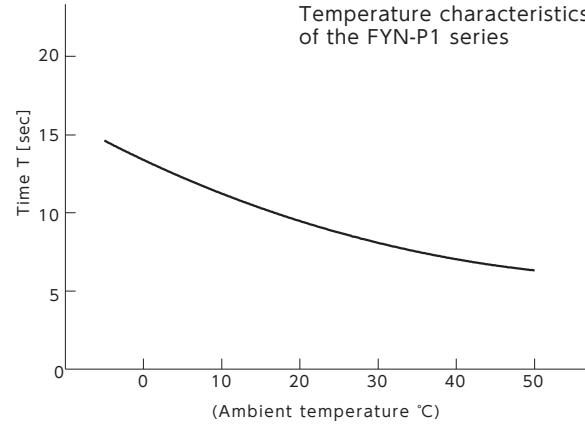

Lid dimensions L: 0.3m

Gravity Center Position : Assumed as $\frac{L}{2}$

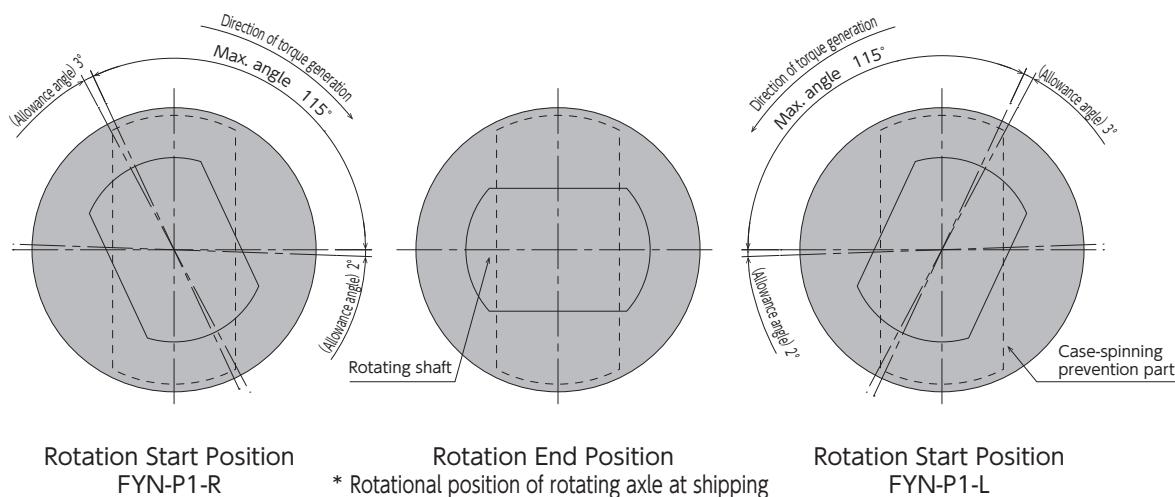

Load torque : $T=1\times9.8\times0.3\div2$

= 1.47N·m

Based on the above calculation, FYN-P1-R153 is selected.



3. When connecting the rotating shaft to other parts, please ensure a tight fit between them. Without a tight fit, the lid will not slow down properly when closing. The corresponding dimensions for fixing the rotating shaft and the main body are as follows.



- Products specification might be changed without notice.

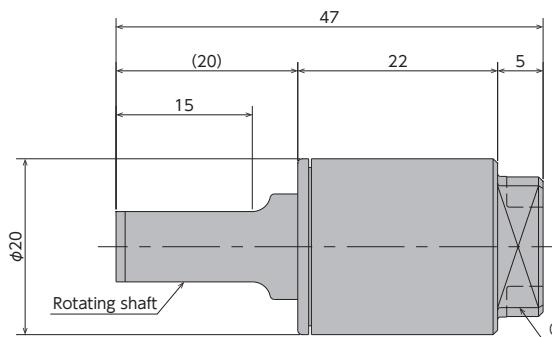
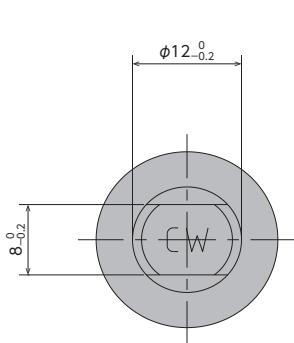
4. Damper characteristics vary according to the ambient temperature. In general, the damper characteristics become weaker as the temperature increases, and become stronger as the temperature decreases. This is because the viscosity of the oil inside the damper varies according to the temperature. When the temperature returns to normal, the damper characteristics will return to normal as well. The time it takes for the lid to close is shown in the graph to the right.

5. The damper's working angle is 115°, as shown below. Rotating the damper beyond this angle will cause damage to the damper. Please ensure that an external stopper is in place. The working angle is based on the width across flat for fixing, located towards the rear end of the main body. The position where the rotation is complete is at 90° with respect to the width across flat.

6. The direction in which torque is generated varies according to the model. Please select the appropriate model for your purpose.

Vane Damper

FYN-N2 Series



* Max. angle	110°
* Operating temperature	-5~50°C
* Weight	13 ±1g
* Body and cap material	Polybutylene terephthalate (PBT)

Specifications

Model	Max. torque	Reverse torque	Directions
FYN-N2-R103	1 N·m (10kgf·cm)	0.2 N·m or lower (2 kgf·cm or lower)	Clockwise (CW)
FYN-N2-L103			Counterclockwise (CCW)
FYN-N2-R203	2 N·m (20 kgf·cm)	0.4 N·m or lower (4 kgf·cm or lower)	Clockwise (CW)
FYN-N2-L203			Counterclockwise (CCW)
FYN-N2-R303	3 N·m (30 kgf·cm)	0.8 N·m or lower (8 kgf·cm or lower)	Clockwise (CW)
FYN-N2-L303			Counterclockwise (CCW)

Note) Measured at 23°C±2°C

* Rotating shaft material	Polyamide (PA)
* Oil type	Silicone oil

How to Use the Damper

1. FYN-N2 series has been designed so that when a lid is closing from a vertical position, as shown in Figure A, high torque is generated just before it closes completely. For a lid that closes from a horizontal position, as shown in Figure B, the strong torque generated just prior to a complete closure may prevent the lid from becoming fully closed.

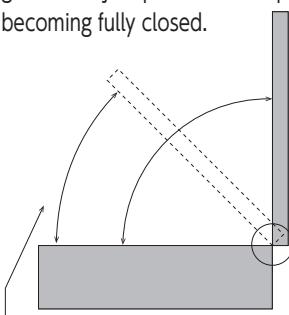


Figure A

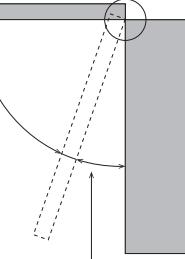
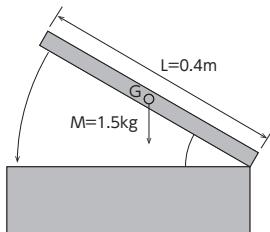


Figure B

Stronger damper torque allows the lid to close gently until it is fully closed.

Stronger damper torque prevents the lid from being fully closed.

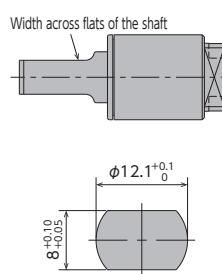
2. When using a damper with a lid shown in the diagram, determine the damper torque based on the following selection calculation.

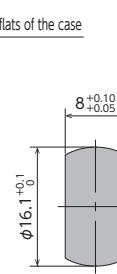

Example)

Lid weight M: 1.5 kg

Lid dimension L: 0.4 m

Gravity Center Position G: Assumed as $\frac{L}{2}$

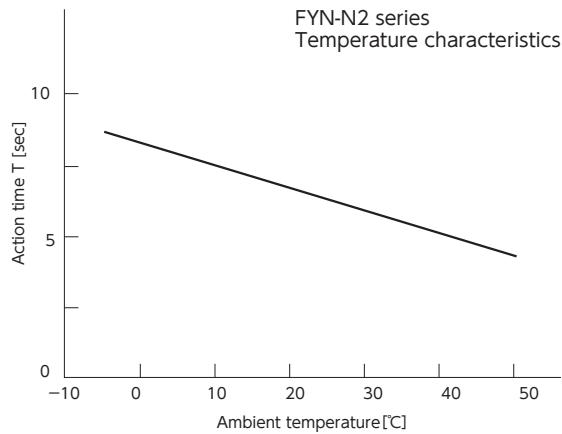

Load torque: $T = 1.5 \times 9.8 \times 0.4 \div 2 = 2.94 \text{ N}\cdot\text{m}$


Based on the above calculation, select FYN-N2-*303.

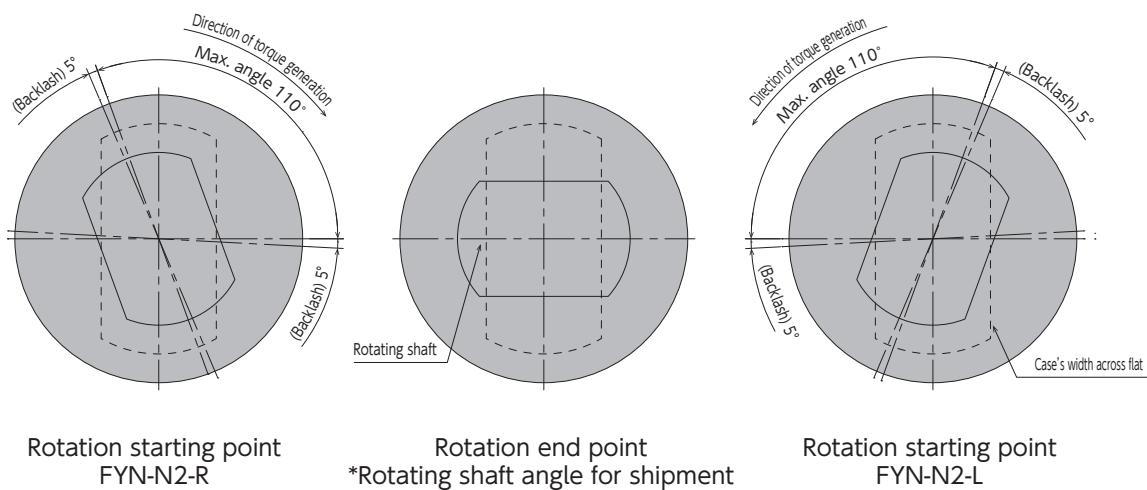
3. When connecting parts that are joined to the rotating shaft, ensure a snug fit. The lid will not decelerate as designed when closing if these parts are not connected properly.

The dimensional tolerance for fixing the rotating shaft and body case is shown below.

(Recommended dimensions for mounting the rotating shaft)



(Recommended dimensions for mounting the body case)


Products specification might be changed without notice.

4. Damper characteristics vary according to the ambient temperature. In general, damper characteristics weaken as the temperature goes up, and become stronger as the temperature goes down.

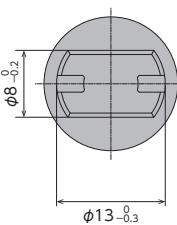
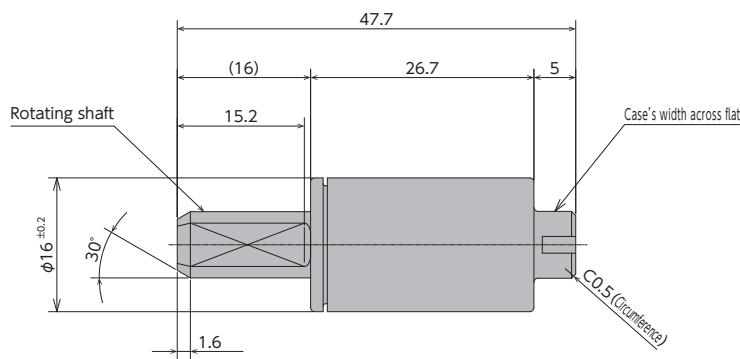
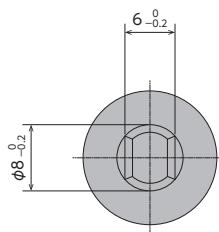
This occurs because the viscosity of oil inside the damper is affected by the temperature change. Once the temperature returns to normal, so will the damper characteristics. Please refer to the right diagram for change in the action time for a free-closing lid.

5. The damper action angle is 110° as shown below. Rotating it beyond this angle will cause the damper to break. Ensure that an external stopper is in place. The action angle is based on the width across flats of the case on the back of the body. The rotation end point is at 90° on the basis of the width across flats of the case. (Refer to the figure below.)

6. There are dampers that generate torque in either the clockwise or counterclockwise direction when the rotating shaft is seen from the above. Select a model according to use.

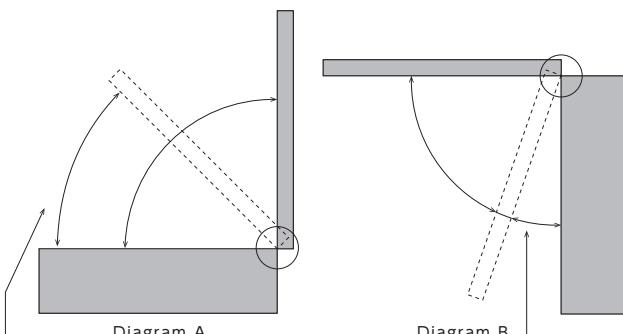
Vane Damper

FYN-B1 Series




*Max. angle	110°
*Operating temperature	-5~50°C
*Weight	9±1g
*Body and cap material	Polybutylene terephthalate (PBT)

Specifications

Model	Max. torque	Reverse torque	Damping direction
FYN-B1-R502	0.5N·m (5kgf·cm)	0.3N·m or lower (3kgf·cm) or lower	Clockwise
FYN-B1-L502			Counter-clockwise
FYN-B1-R103	1N·m (10kgf·cm)	0.4N·m or lower (4kgf·cm) or lower	Clockwise
FYN-B1-L103			Counter-clockwise
FYN-B1-R153	1.5N·m (15kgf·cm)	0.5N·m or lower (5kgf·cm) or lower	Clockwise
FYN-B1-L153			Counter-clockwise


Note) Measured at 23°C±2°C

*Rotating shaft material	Polyphenylene Sulphide (PPS)
*Oil type	Silicone oil
*R type has Black shaft / L type has white shaft	

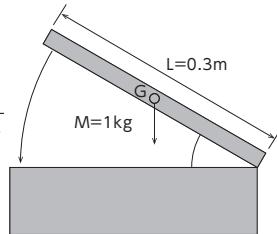
How to Use the Damper

1. FYN-B1 is designed to generate a large torque just before a lid closing from a vertical position, as shown in Diagram A, comes to a full closure. When a lid is closed from a horizontal position, as shown in Diagram B, a strong torque is generated just before the lid is fully closed, causing the lid to not close properly.

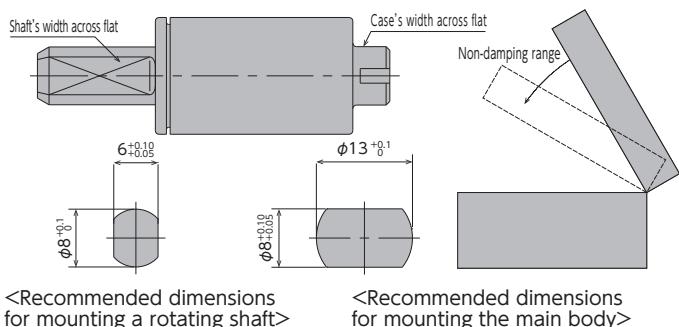
The damper torque becomes larger, preventing the lid from slowing down.

The damper torque becomes larger, preventing the lid from closing completely.

2. When using a damper on a lid, such as the one shown in the diagram, use the following selection calculation to determine the damper torque. Example)


Lid mass M : 1kg

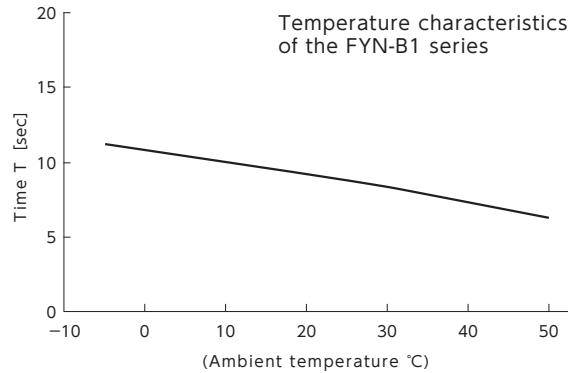
Lid dimensions L: 0.3m


Gravity Center Position : Assumed as $\frac{L}{2}$

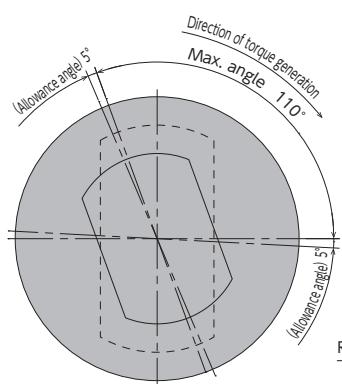
$$\text{Load torque} : T = 1.5 \times 0.4 \times 9.8 \div 2 \\ = 2.94 \text{N·m}$$

Based on the above calculation, FYN-B1-*153 is selected.

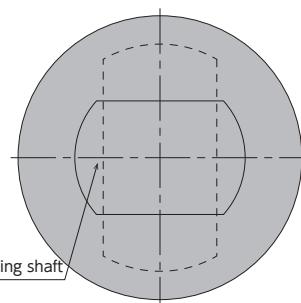
3. When connecting the rotating shaft to other parts, please ensure a tight fit between them. Without a tight fit, the lid will not slow down properly when closing. The corresponding dimensions for fixing the rotating shaft and the main body are as follows.

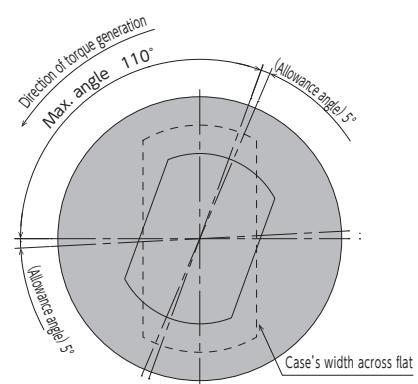


<Recommended dimensions for mounting a rotating shaft>


<Recommended dimensions for mounting the main body>

●Products specification might be changed without notice.


4. Damper characteristics vary according to the ambient temperature. In general, the damper characteristics become weaker as the temperature increases, and become stronger as the temperature decreases. This is because the viscosity of the oil inside the damper varies according to the temperature. When the temperature returns to normal, the damper characteristics will return to normal as well. The changes in the time it takes for the lid to close are shown in the graph to the right.


5. The damper's working angle is 110°, as shown below. Rotating the damper beyond this angle will cause damage to the damper. Please ensure that an external stopper is in place. The working angle is based on the width across flat for fixing, located towards the rear end of the main body. The position where the rotation is complete is at 90° with respect to the width across flat.

Rotation Start Position
FYN-B1-R

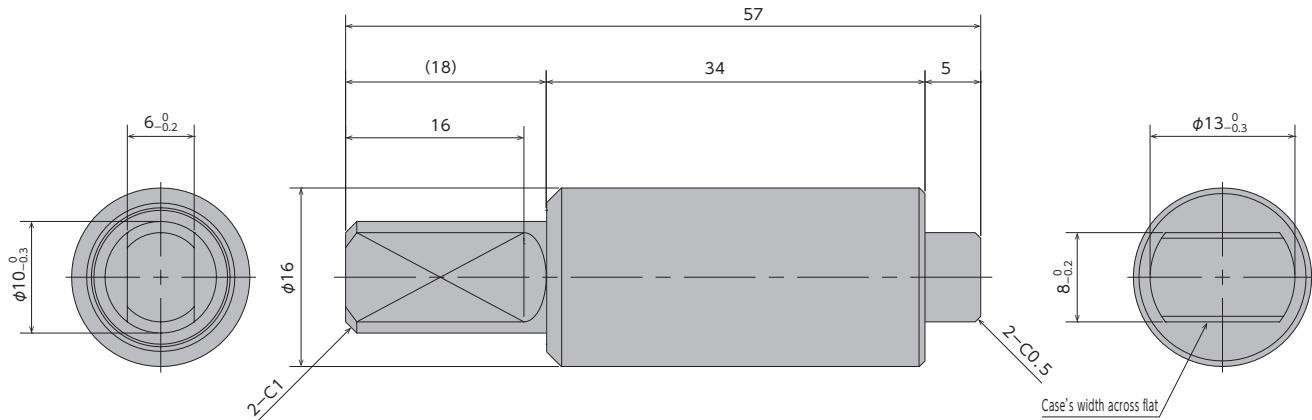
Rotation End Position
* Rotational position of rotating axle at shipping

Rotation Start Position
FYN-B1-L

6. The direction in which torque is generated varies according to the model. Please select the appropriate model for your purpose.

Vane Damper

FYN-U1 Series


* Max. angle	115°
* Operating temperature	-5~50°C
* Weight	40±4g
* Main body, rotating shaft materials	Zinc die-cast (ZDC)

Specifications

Model	Max. torque	Reverse torque	Damping direction
FYN-U1-R103	1 N·m (10 kgf·cm)	0.5 N·m or lower (5 kgf·cm or lower)	Clockwise
FYN-U1-L103			Counter-clockwise
FYN-U1-R203	2 N·m (20 kgf·cm)	0.7 N·m or lower (7 kgf·cm or lower)	Clockwise
FYN-U1-L203			Counter-clockwise
FYN-U1-R303	3 N·m (30 kgf·cm)	0.9 N·m or lower (9 kgf·cm or lower)	Clockwise
FYN-U1-L303			Counter-clockwise

Note) Measured at 23°C±2°C

* Cap material	Polyphenylene Sulphide (PPS)
* Oil type	Silicone oil

How to Use the Damper

1. FYN-U1 is designed to generate a large torque just before a lid closing from a vertical position, as shown in Diagram A, comes to a full closure. When a lid is closed from a horizontal position, as shown in Diagram B, a strong torque is generated just before the lid is fully closed, causing the lid to not close properly.

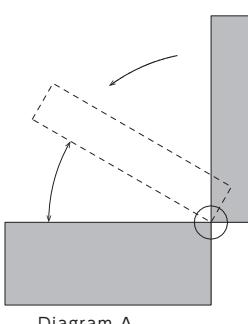


Diagram A

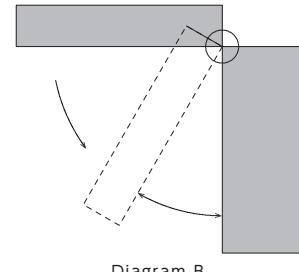


Diagram B

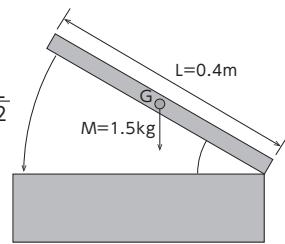
The damper torque becomes larger, preventing the lid from slowing down.

The damper torque becomes larger, preventing the lid from closing completely.

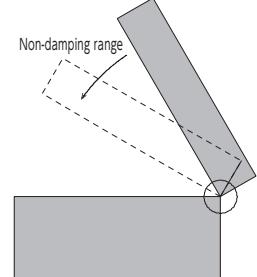
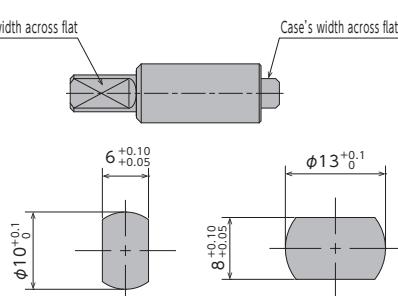
2. When using a damper on a lid, such as the one shown in the diagram, use the following selection calculation to determine the damper torque.

Example)

Lid mass M : 1.5kg

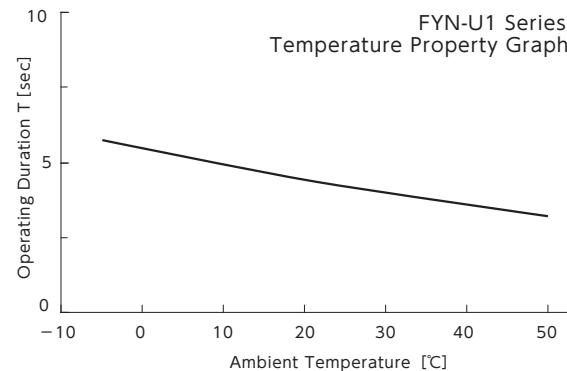

Lid dimensions L : 0.4m

Gravity Center Position : Assumed as $\frac{L}{2}$

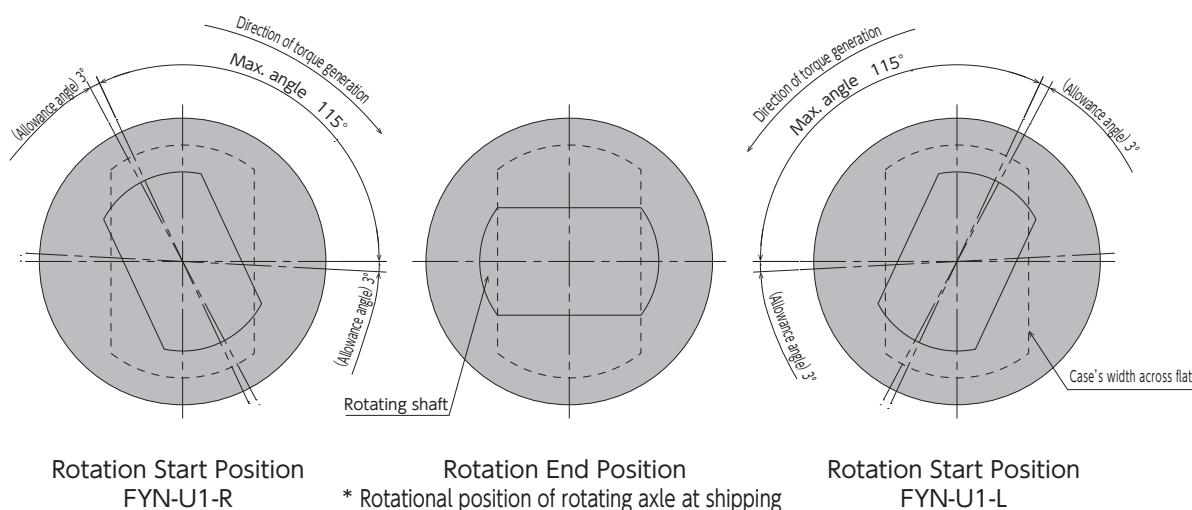


Load torque : $T = 1.5 \times 9.8 \times 0.4 \div 2$

$$= 2.94 \text{ N·m}$$

Based on the above calculation, FYN-U1-*303 is selected.



3. When connecting the rotating shaft to other parts, please ensure a tight fit between them. Without a tight fit, the lid will not slow down properly when closing. The corresponding dimensions for fixing the rotating shaft and the main body are as follows.



●Products specification might be changed without notice.

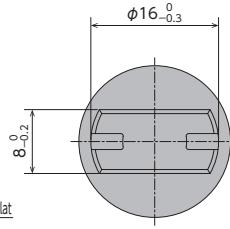
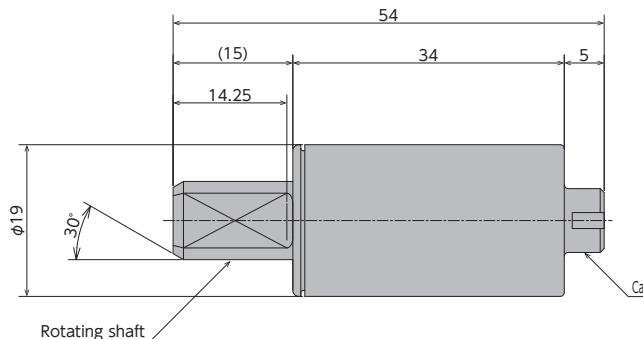
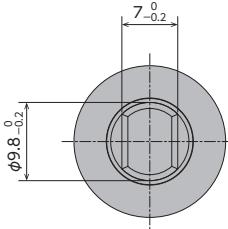
4. Damper characteristics vary according to the ambient temperature. In general, the damper characteristics become weaker as the temperature increases, and become stronger as the temperature decreases. This is because the viscosity of the oil inside the damper varies according to the temperature. When the temperature returns to normal, the damper characteristics will return to normal as well. The changes in the time it takes for the lid to close are shown in the graph to the right.

5. The damper's working angle is 110°, as shown below. Rotating the damper beyond this angle will cause damage to the damper. Please ensure that an external stopper is in place. The working angle is based on the width across flat for fixing, located towards the rear end of the main body. The position where the rotation is complete is at 90° with respect to the width across flat.

6. The direction in which torque is generated varies according to the model. Please select the appropriate model for your purpose.

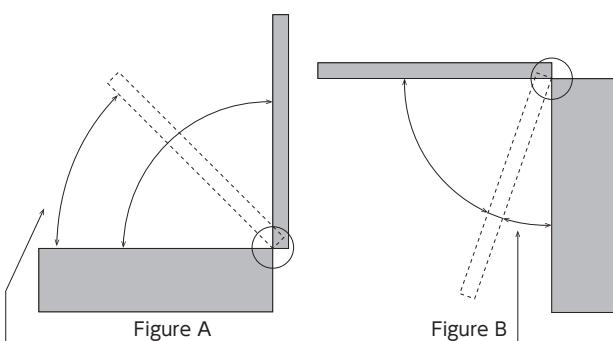
Vane Damper

FYN-C1 Series




* Max. angle	110°
* Operating temperature	-5~50°C
* Weight	30±2g
* Body and cap material	Polybutylene terephthalate (PBT)

Specifications

Model	Max. torque	Reverse torque	Directions
FYN-C1-R203	2N·m (20kgf·cm)	0.3 N·m or lower (3 kgf·cm or lower)	Clockwise (CW)
FYN-C1-L203			Counterclockwise (CCW)
FYN-C1-R253	2.5N·m (25kgf·cm)	0.5 N·m or lower (5 kgf·cm or lower)	Clockwise (CW)
FYN-C1-L253			Counterclockwise (CCW)
FYN-C1-R303	3N·m (30kgf·cm)	0.7 N·m or lower (7 kgf·cm or lower)	Clockwise (CW)
FYN-C1-L303			Counterclockwise (CCW)
FYN-C1-R353	3.5N·m (35kgf·cm)	0.9 N·m or lower (9 kgf·cm or lower)	Clockwise (CW)
FYN-C1-L353			Counterclockwise (CCW)
FYN-C1-R403	4N·m (40kgf·cm)	1.1 N·m or lower (11 kgf·cm or lower)	Clockwise (CW)
FYN-C1-L403			Counterclockwise (CCW)


Note) Measured at 23°C±2°C

* Rotating shaft material Zinc die-cast (ZDC)
* Oil type Silicone oil

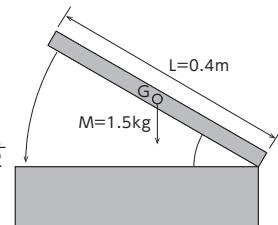
How to Use the Damper

1. The FYN-C1 series has been designed so that when a lid is closing from a vertical position, as shown in Figure A, high torque is generated just before it closes completely. For a lid that closes from a horizontal position, as shown in Figure B, the strong torque generated just prior to a complete closure may prevent the lid from becoming fully closed.

Stronger damper torque allows the lid to close gently until it is fully closed.

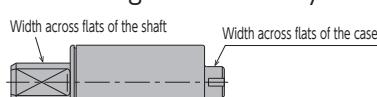
Stronger damper torque prevents the lid from being fully closed.

2. When using a damper with a lid shown in the diagram, determine the damper torque based on the following selection calculation.

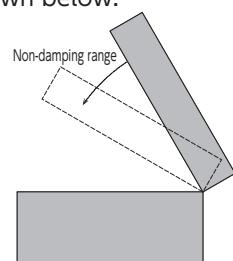

Example)

Lid weight M : 2kg

Lid dimension L : 0.4m


Gravity Center Position G: Assumed as $\frac{L}{2}$

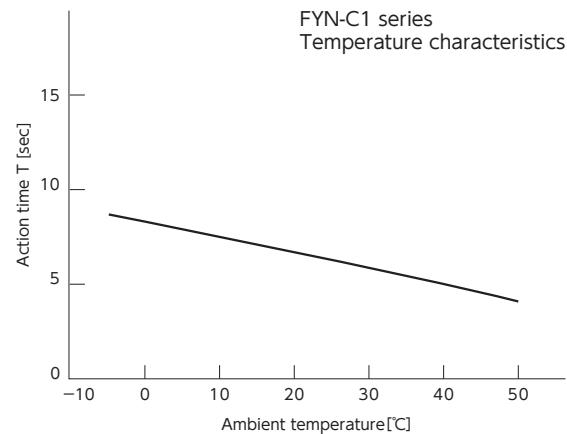
Load torque : $T=2\times9.8\times0.4\div2$
 $=3.92\text{N}\cdot\text{m}$



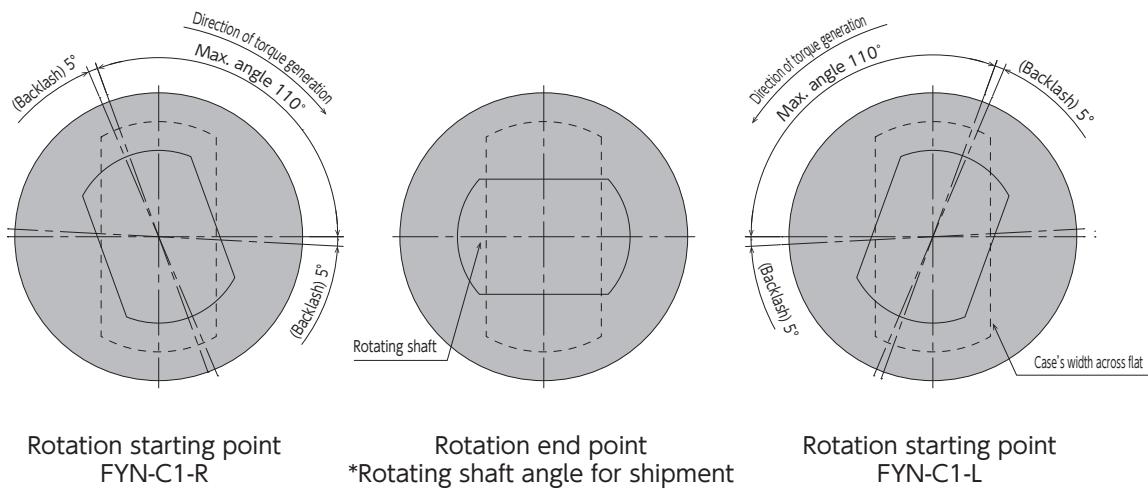
Based on the above calculation, select FYN-C1-*403.

3. When connecting parts that are joined to the rotating shaft, ensure a snug fit. The lid will not decelerate as designed when closing if these parts are not connected properly. The dimensional tolerance for fixing the rotating shaft and body case is shown below.

(Recommended dimensions for mounting the rotating shaft)



(Recommended dimensions for mounting the body case)


●Products specification might be changed without notice.

4. Damper characteristics vary according to the ambient temperature. In general, damper characteristics weaken as the temperature goes up, and become stronger as the temperature goes down.

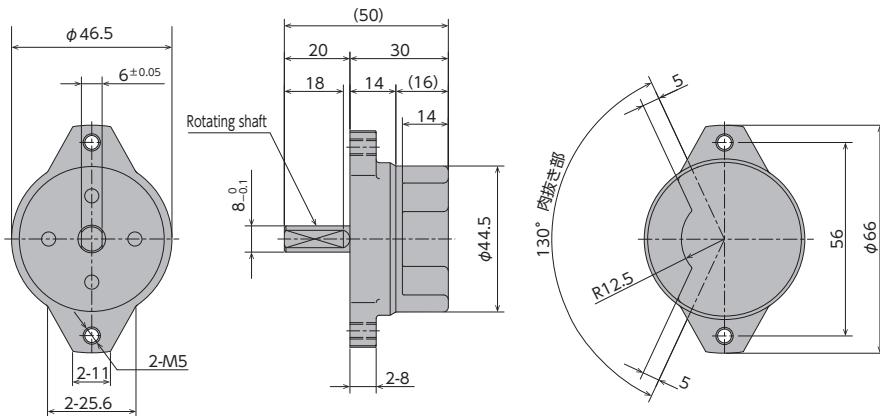
This occurs because the viscosity of oil inside the damper is affected by the temperature change. Once the temperature returns to normal, so will the damper characteristics. Please refer to the right diagram for change in the action time for a free-closing lid.

5. The damper action angle is 110° as shown below. Rotating it beyond this angle will cause the damper to break. Ensure that an external stopper is in place. The action angle is based on the width across flats of the case on the back of the body. The rotation end point is at 90° on the basis of the width across flats of the case. (Refer to the figure below.)

6. There are dampers that generate torque in either the clockwise or counterclockwise direction when the rotating shaft is seen from the above. Select a model according to use.

Vane Damper

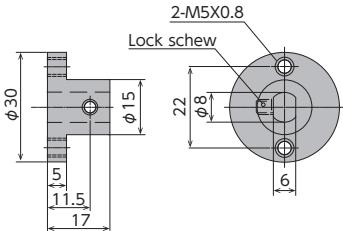
FYN-D3 Series



* Max. angle 180°
 * Operating temperature -5~50°C
 * Weight 215±10g

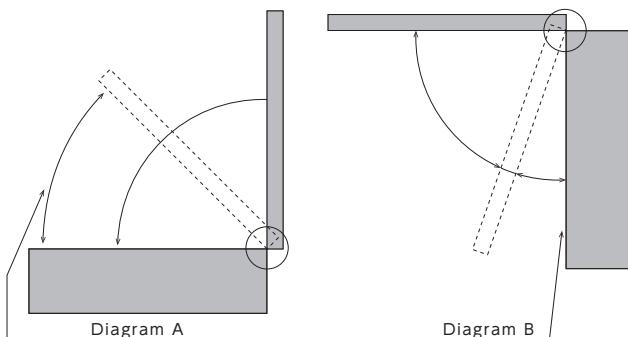
Specifications

Model	Max. torque	Reverse torque	Damping direction
FYN-D3-R503	5 N·m (50 kgf·cm)	1 N·m or lower (10 kgf·cm or lower)	Clockwise
FYN-D3-L503			Counter-clockwise
FYN-D3-R703	7 N·m (70 kgf·cm)	1 N·m or lower (10 kgf·cm or lower)	Clockwise
FYN-D3-L703			Counter-clockwise
FYN-D3-R104	10 N·m (100 kgf·cm)	2 N·m or lower (20 kgf·cm or lower)	Clockwise
FYN-D3-L104			Counter-clockwise


* Body and cap material Zinc die-cast (ZDC)
 * Rotating shaft material S25C
 * Oil type Silicone oil

Optional Parts

Rotating shaft flange ROP-010H1


Applicable model	Model
FYN-D3	ROP-010H1

Rotating shaft flange
ROP-010H1

How to Use the Damper

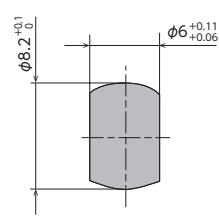
1. FYN-D3 is designed to generate a large torque just before a lid closing from a vertical position, as shown in Diagram A, comes to a full closure. When a lid is closed from a horizontal position, as shown in Diagram B, a strong torque is generated just before the lid is fully closed, causing the lid to not close properly.

The damper torque becomes larger, preventing the lid from slowing down.

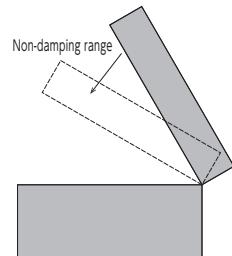
The damper torque becomes larger, preventing the lid from closing completely.

The angle in which the damper torque becomes large can be customized by modifying the inside orifice.

2. When using a damper on a lid, such as the one shown in the diagram, use the following selection calculation to determine the damper torque. Example)

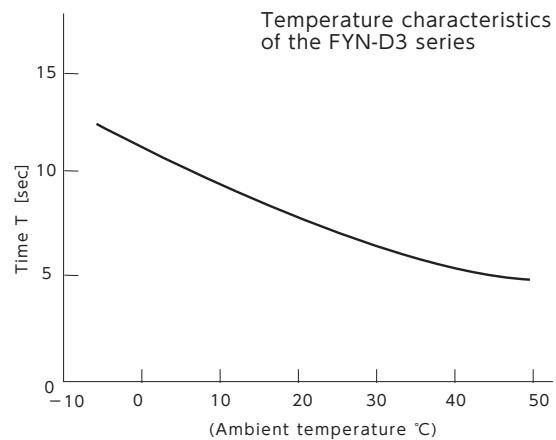

Lid mass M : 5kg

Lid dimensions L: 0.4m

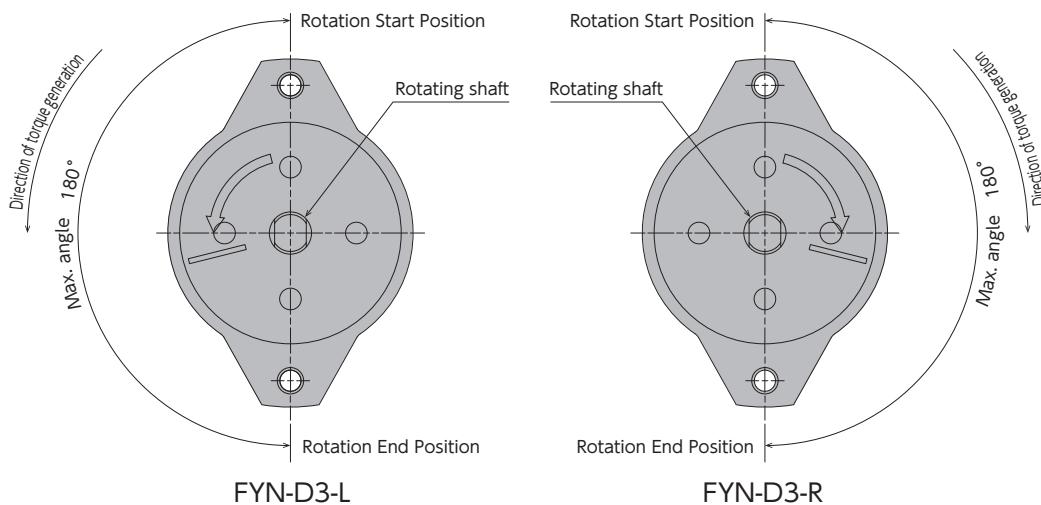

Gravity Center Position : Assumed as $\frac{L}{2}$
 Load torque : $T = 5 \times 9.8 \times 0.4 \div 2 = 9.8 \text{ N}\cdot\text{m}$

Based on the above calculation,
FYN-D3-*104 is selected.

3. When connecting the rotating shaft to other parts, please ensure a tight fit between them. Without a tight fit, the lid will not slow down properly when closing. The corresponding dimensions for fixing the rotating shaft and the main body are as follows.



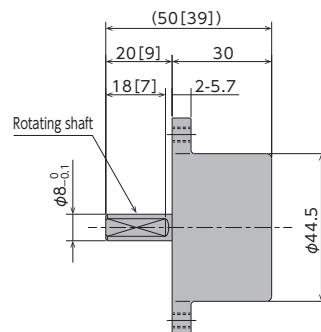
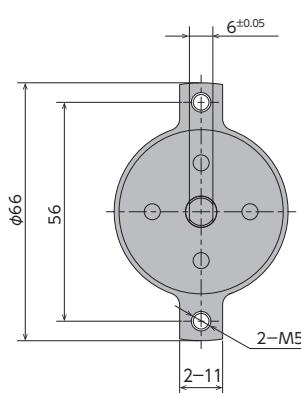
<Recommended dimensions
for mounting a rotating shaft>



●Products specification might be changed without notice.

4. Damper characteristics vary according to the ambient temperature. In general, the damper characteristics become weaker as the temperature increases, and become stronger as the temperature decreases. This is because the viscosity of the oil inside the damper varies according to the temperature. When the temperature returns to normal, the damper characteristics will return to normal as well. The changes in the time it takes for the lid to close are shown in the graph to the right.

5. The damper's working angle is 110°, as shown below. Rotating the damper beyond this angle will cause damage to the damper. Please ensure that an external stopper is in place. The working angle is based on the width across flat for fixing, located towards the rear end of the main body. The position where the rotation is complete is at 90° with respect to the width across flat.



6. The direction in which torque is generated varies according to the model. Please select the appropriate model for your purpose.

Vane Damper

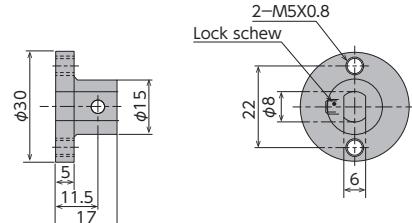
FYT/FYN-D1(D2) Series

* Max. angle	105°
* Operating temperature	-5~50°C
* Weight	D1 : 215±10g, D2 : 210±10g
* Body and cap material	Zinc die-cast (ZDC)

Dimensions of D2 series are in []

Specifications

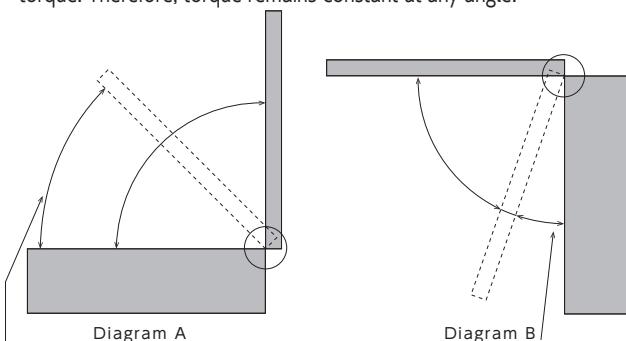
Model	Max. torque	Reverse torque	Damping direction
FYT-D1 (2)-104	10 N·m (100 kgf·cm)	—	Both directions
FYN-D1 (2)-R104	10 N·m (100 kgf·cm)	0.5 N·m or lower (5 kgf·cm or lower)	Clockwise
FYN-D1 (2)-L104	10 N·m (100 kgf·cm)	0.5 N·m or lower (5 kgf·cm or lower)	Counter-clockwise


Note) Measured at 23°C±2°C
The FYT/N-D2 series has a shorter shaft length.

* Rotating shaft material S25C
* Oil type Silicone oil

Optional Parts

Rotating shaft flange ROP-010H1


Model
ROP-010H1

Rotating shaft flange
ROP-010H1

How to Use the Damper

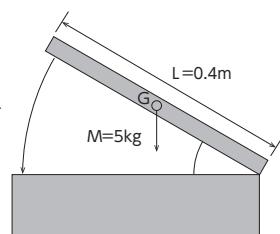
1. The uni-directional FYN-D1 is designed to generate a large torque just before a lid closing from a vertical position, as shown in Diagram A, comes to a full closure. When a lid is closed from a horizontal position, as shown in Diagram B, a strong torque is generated just before the lid is fully closed, causing the lid to not close properly. Torque is generated in both clockwise and counterclockwise directions in the FTY-D1 series. Unlike the FYN-D1 series, it does not have a fixed orifice for adjusting torque. Therefore, torque remains constant at any angle.

The damper torque becomes larger, preventing the lid from slowing down.

The damper torque becomes larger, preventing the lid from closing completely.

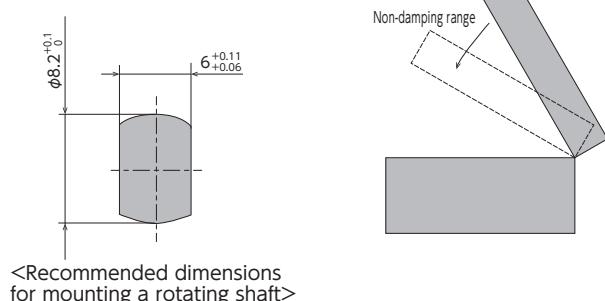
The angle in which the damper torque becomes large can be customized by modifying the inside orifice.

2. When using a damper on a lid, such as the one shown in the diagram, use the following selection calculation to determine the damper torque. Example)

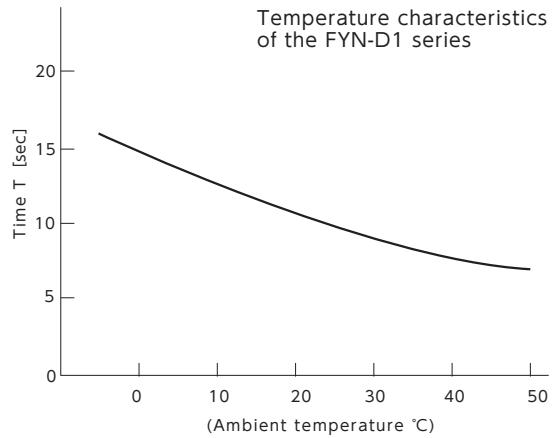

Lid mass M : 5kg

Lid dimensions L : 0.4m

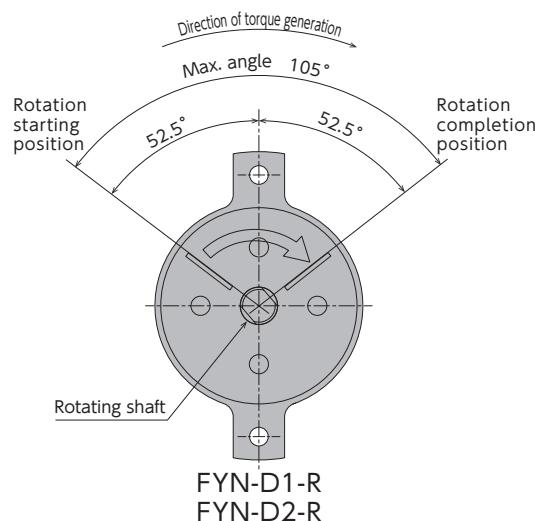
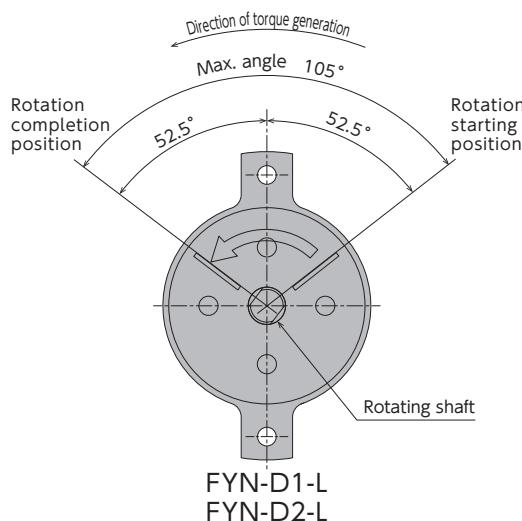
Gravity Center Position : Assumed as $\frac{L}{2}$


Load torque : $T = 5 \times 9.8 \times 0.4 \div 2$

$$= 9.8 \text{ N·m}$$


Based on the above calculation, FYN-D1-104 is selected.

3. When connecting the rotating shaft to other parts, please ensure a tight fit between them. Without a tight fit, the lid will not slow down properly when closing. The corresponding dimensions for fixing the rotating shaft and the main body are as follows.

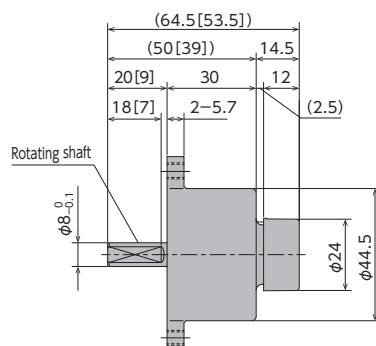
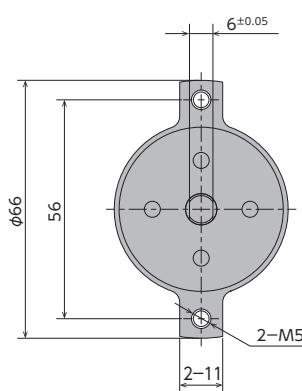



●Products specification might be changed without notice.

4. Damper characteristics vary according to the ambient temperature. In general, the damper characteristics become weaker as the temperature increases, and become stronger as the temperature decreases. This is because the viscosity of the oil inside the damper varies according to the temperature. When the temperature returns to normal, the damper characteristics will return to normal as well. The changes in the time it takes for the lid to close are shown in the graph to the right.

5. The damper's working angle is 110°, as shown below. Rotating the damper beyond this angle will cause damage to the damper. Please ensure that an external stopper is in place. The working angle is based on the width across flat for fixing, located towards the rear end of the main body. The position where the rotation is complete is at 90° with respect to the width across flat.

6. The FYN-D1 series is a fixed type; its torque is non-adjustable. However, a customized order for a torque between the range of 2 ~20N·m is possible by changing the oil viscosity.



7. The direction in which torque is generated varies according to the model. Please select the appropriate model for your purpose.

Vane Damper

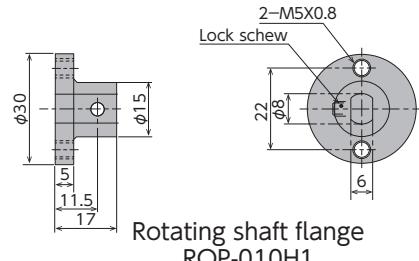
FYT/FYN-H1(H2) Series

- * Max. angle 105°
- * Operating temperature -5~50°C
- * Weight H1 : 240±10g, H2 : 235±10g

Dimensions of H2 series are in []

Specifications

Model	Max. torque	Reverse torque	Damping direction
FYT-H1 (2)-104	10 N·m (100 kgf·cm)	—	Both directions
FYN-H1 (2)-R104	10 N·m (100 kgf·cm)	0.5 N·m or lower (5 kgf·cm or lower)	Clockwise
FYN-H1 (2)-L104			Counter-clockwise


Note) Measured at 23°C ± 2°C
The FYT/N-H2 series has shorter shaft length.

- * Body and cap material Zinc die-cast (ZDC)
- * Rotating shaft material S25C
- * Oil type Silicone oil

Optional Parts

Rotating shaft flange ROP-010H1

Model
ROP-010H1

Rotating shaft flange ROP-010H1

How to Use the Damper

1. The uni-directional FYN-H1 is designed to generate a large torque just before a lid closing from a vertical position, as shown in Diagram A, comes to a full closure. When a lid is closed from a horizontal position, as shown in Diagram B, a strong torque is generated just before the lid is fully closed, causing the lid to not close properly. Torque is generated in both clockwise and counterclockwise directions in the FYT-H1 series. Unlike the FYN-H1 series, it does not have a fixed orifice for adjusting torque. Therefore, torque remains constant at any angle.

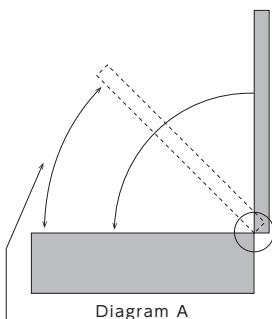


Diagram A

The damper torque becomes larger, preventing the lid from slowing down.

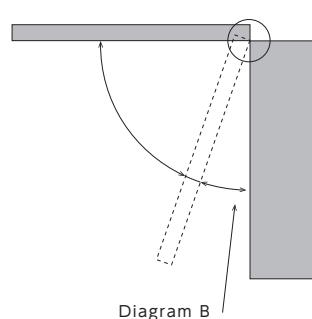


Diagram B

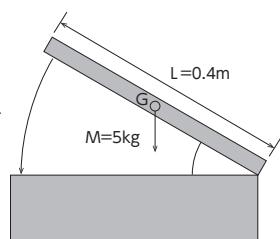
The damper torque becomes larger, preventing the lid from closing completely.

The angle in which the damper torque becomes large can be customized by modifying the inside orifice.

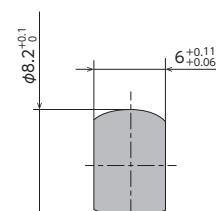
2. When using a damper on a lid, such as the one shown in the diagram, use the following selection calculation to determine the damper torque. Example)

Lid mass M : 5kg

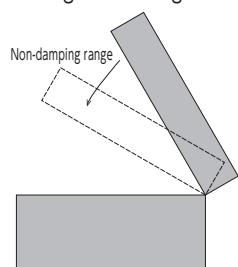
Lid dimensions L : 0.4m


Gravity Center Position : Assumed as $\frac{L}{2}$

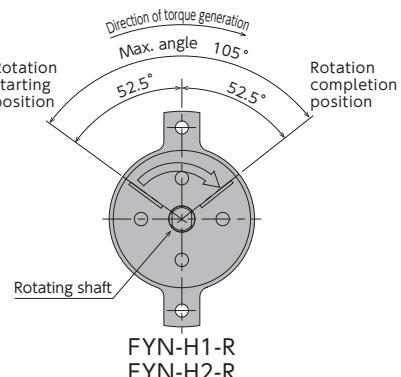
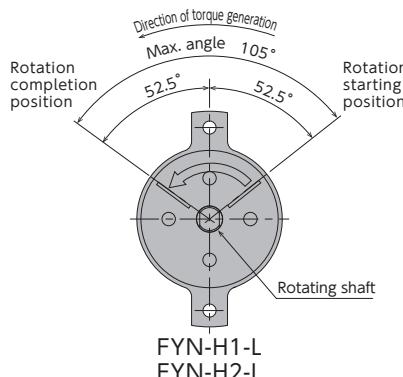
Load torque : $T = 5 \times 9.8 \times 0.4 \div 2$


$$= 9.8 \text{ N}\cdot\text{m}$$

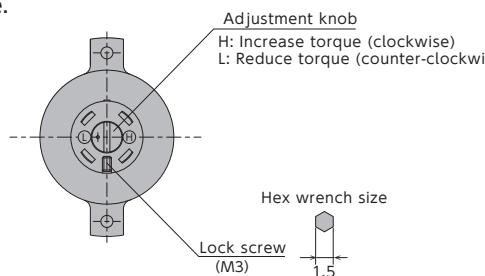
Based on the above calculation,


FYN-H1-*104 is selected.

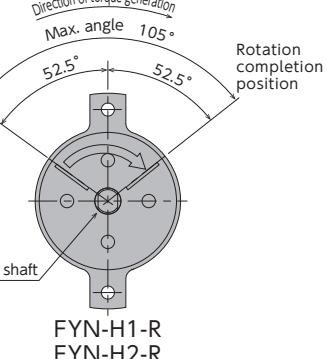
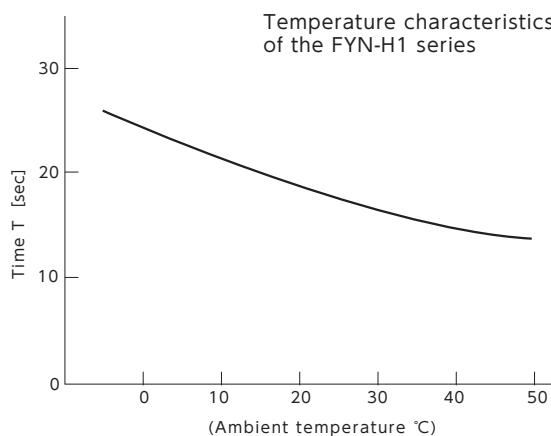
3. When connecting the rotating shaft to other parts, please ensure a tight fit between them. Without a tight fit, the lid will not slow down properly when closing. The corresponding dimensions for fixing the rotating shaft and the main body are as follows.



<Recommended dimensions for mounting a rotating shaft>

●Products specification might be changed without notice.

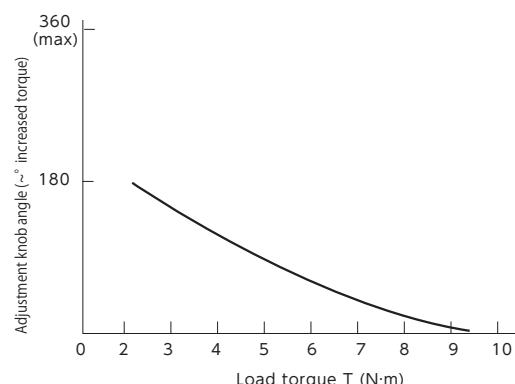

4. Damper characteristics vary according to the ambient temperature. In general, the damper characteristics become weaker as the temperature increases, and become stronger as the temperature decreases. This is because the viscosity of the oil inside the damper varies according to the temperature. When the temperature returns to normal, the damper characteristics will return to normal as well. The changes in the time it takes for the lid to close are shown in the graph to the right.

5. The damper's working angle is 110°, as shown below. Rotating the damper beyond this angle will cause damage to the damper. Please ensure that an external stopper is in place. The working angle is based on the width across flat for fixing, located towards the rear end of the main body. The position where the rotation is complete is at 90° with respect to the width across flat.

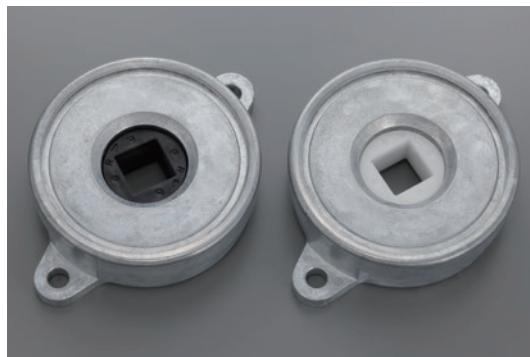



6. How to adjust the damper

- 1) In the FYT-H1 (H2) and FYN-H1 (H2) series, the amount of generated torque can be adjusted with the adjustment knob located towards the rear of the main body. Insert a screwdriver in the minus groove to turn.
- 2) Turn the adjustment knob in the H direction to increase torque.
- 3) Turn the adjustment knob in the L direction to reduce torque.
- 4) Do not turn the adjustment knob more than 360°. Turning the knob more than 360° causes the adjustment shaft to slip out, resulting in oil leakage.
- 5) Once the adjustment is complete, secure with a lock screw. Using the damper without securing it may result in fluctuating torque.



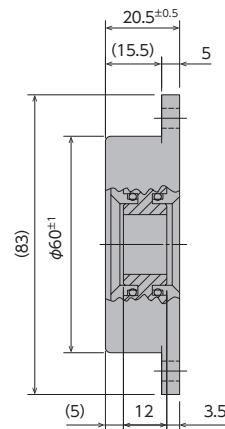
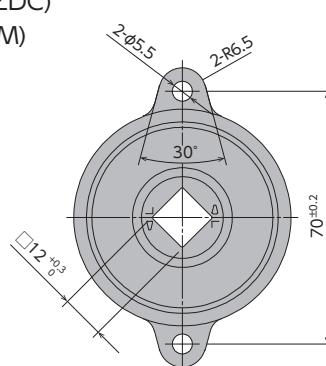
7. The direction in which torque is generated varies according to the model. Please select the appropriate model for your purpose.


<Range of torque adjustment>

Please refer to the graph below for the relationship between torque and the adjustment knob.

Vane Damper

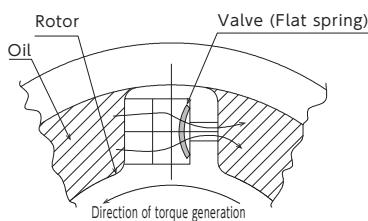
FYN-S1 Series

* Max. angle	130°
* Operating temperature	-5~50°C
* Weight	220±10g
* Main body material	Zinc die-cast (ZDC)
* Cap material	Zinc die-cast (ZDC)
* Rotor material	Polyacetal (POM)
* Oil type	Silicone oil

Specifications

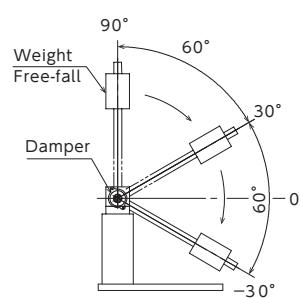
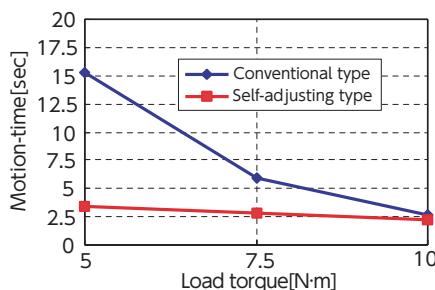
Model	Max. torque	Reverse torque	Damping direction
FYN-S1-R104	10 N·m (100 kgf·cm)	1.5 N·m or lower (15 kgf·cm or lower)	Clockwise
FYN-S1-L104			Counter-clockwise


Note) Measured at 23°C ± 2°C

How to Use the Damper

1. Operating characteristics of self-adjusting oil pressure dampers

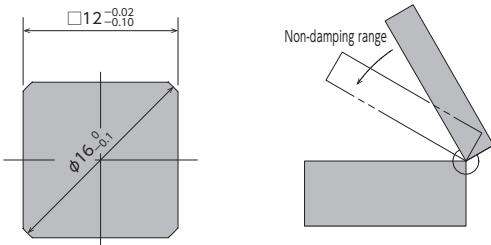
In a conventional vane damper, the damping strength (damping constant) does not change regardless of the load torque used. Because of this, its working speed is slower when the load torque is small, and faster when the load torque is large. However, because the self-adjusting FYN-S1 series is designed to self-adjust the damping force (damping constant) according to the applied load, the working speed fluctuates less compared to conventional dampers when the applied load is altered. The acceptable range of torque is 5~10N·m. Please select your damper by referring to the motion-time graph below.



[Operating principles of the self-adjusting type]

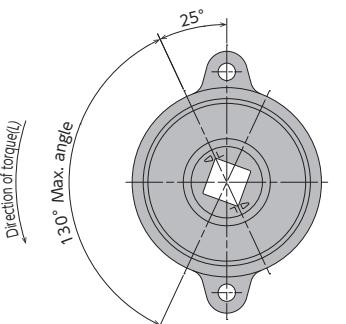
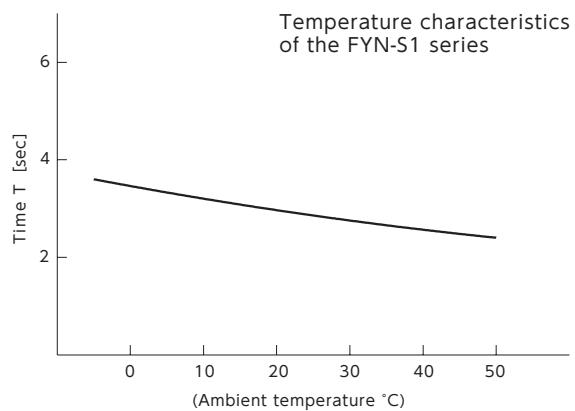
As shown in the diagram to the left, by changing the shape of the valve (flat spring), the amount of oil flow is altered, adjusting the damper's generated torque. (PAT.P)

[Measurement conditions for the motion-time graph]

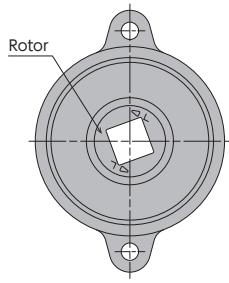
- Load torque T 5~10N·m
- Measured angle 30° ~ -30°
- Measurement temperature 23°C ± 2°C


[Motion time graph]

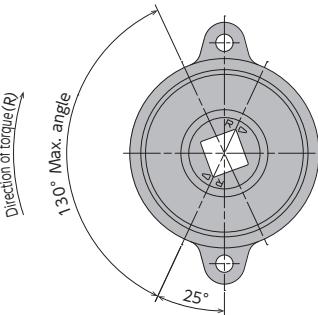
As the level of self-adjustment may vary depending on the range of the working angle of the actual work, please verify under actual working conditions before you select your damper.



●Products specification might be changed without notice.

2. When using the damper, please ensure that a shaft with specified angular dimensions is inserted in the damper's shaft opening. Also, please ensure a tight fit between the shaft and the damper shaft's opening. Without a tight fit, the non-damping range becomes larger in a closing motion, etc., and it may not slow down properly. Please see the diagrams to the right for the recommended shaft dimensions for a damper.


3. Damper characteristics vary according to the ambient temperature. In general, the damper characteristics become weaker as the temperature increases, and become stronger as the temperature decreases. This is because the viscosity of the oil inside the damper varies according to the temperature. When the temperature returns to normal, the damper characteristics will return to normal as well. The time it takes for the lid to close is shown in the graph to the right.

4. The damper's working angle is 130°, as shown below. Rotating the damper beyond this angle will cause damage to the damper. Please ensure that an external stopper is in place.



Rotation starting position
* Rotational position of the rotor at shipping

FYN-S1-L

Rotation completion position

Rotation starting position
* Rotational position of the rotor at shipping

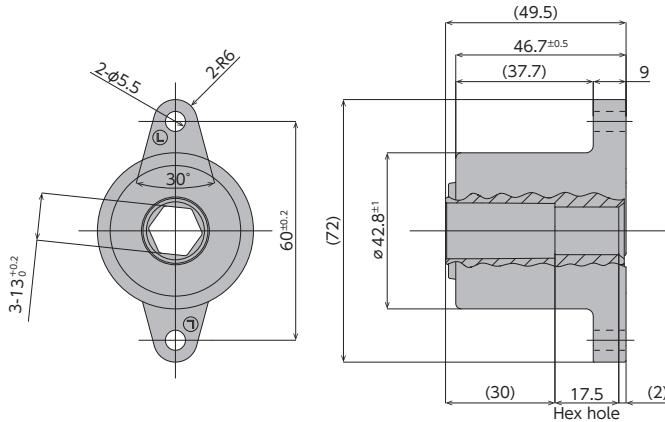
FYN-S1-R

5. Because the FYN-S1 series is a self-adjusting type, the torque cannot be adjusted manually. However, by altering the viscosity of the oil, its damper characteristics can be modified. (Please contact us, as this is a custom order.)

6. The direction in which torque is generated varies according to the model. Please select the appropriate model for your purpose.

Vane Damper

FYN-X2 Series

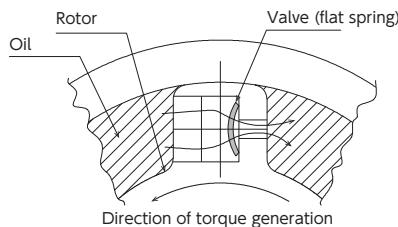


*Max. angle	106°
*Operating temperature	-5~50°C
*Weight	287±10g
*Body material	Zinc die-cast (ZDC)
*Cap material	Zinc die-cast (ZDC)
*Rotor material	Zinc die-cast (ZDC)
*Oil type	Silicone oil

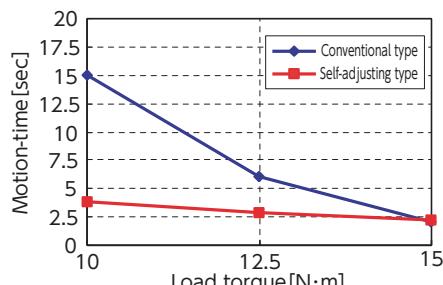
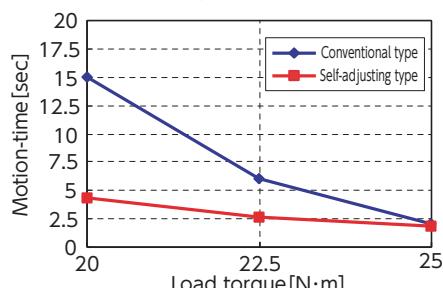
Specifications

Model	Max. torque	Reverse torque	Directions
FYN-X2-R154	15N·m (150kgf·cm)	2 N·m or lower (20kgf·cm以下)	Clockwise
FYN-X2-L154			Counterclockwise
FYN-X2-R254	25N·m (250kgf·cm)	3 N·m or lower (30 kgf·cm or lower)	Clockwise
FYN-X2-L254			Counterclockwise

Note) Measured at 23°C±2°C

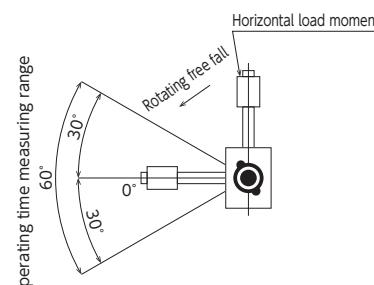


How to Use the Damper

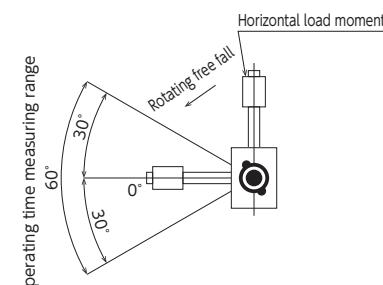


1. Operating characteristics of self-adjusting oscillating dampers

In a conventional oscillating damper, the damping strength (damping constant) does not change regardless of the load torque used. Therefore, the operating speed is slower when the load torque is small, and faster when the load torque is large. However, since the self-adjusting FYN-X2 series is designed to self-adjust the damping strength (damping constant) according to the applied load, its motion-time fluctuates less than that of conventional dampers when the load changes.

The acceptable range of torque is 10 to 15N·m or 20 to 25N·m. Please select your damper by referring to the motion-time graph below.


[Motion time graph]

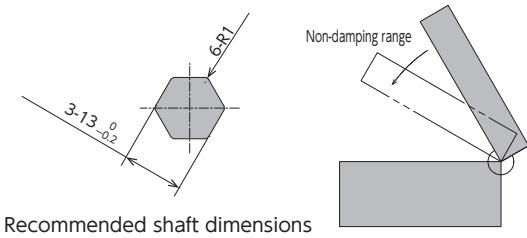
[Operating principles of the self-adjusting type]


As shown in the diagram to the left, by changing the shape of the valve (flat spring), the amount of oil flow is altered, adjusting the damper's generated torque. (PAT.P)

[Measurement conditions for the motion-time graph]

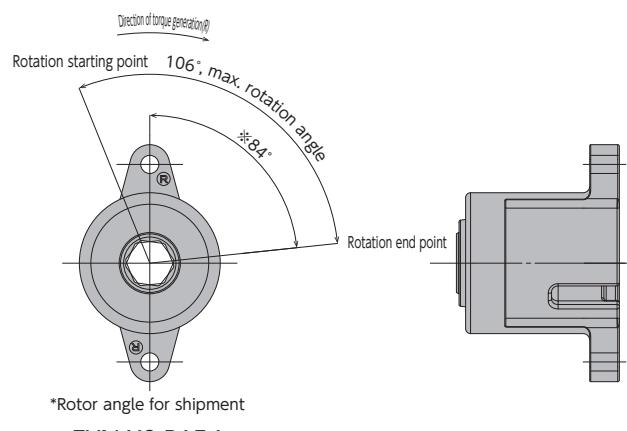
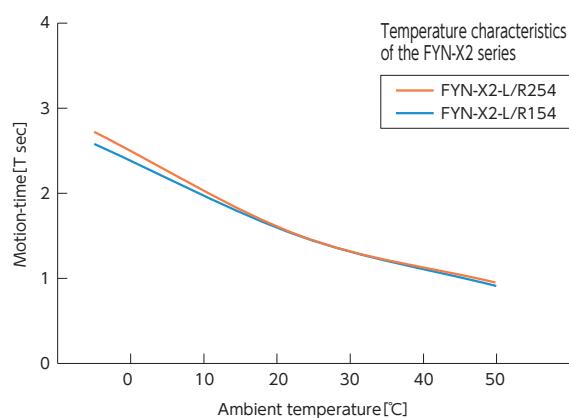
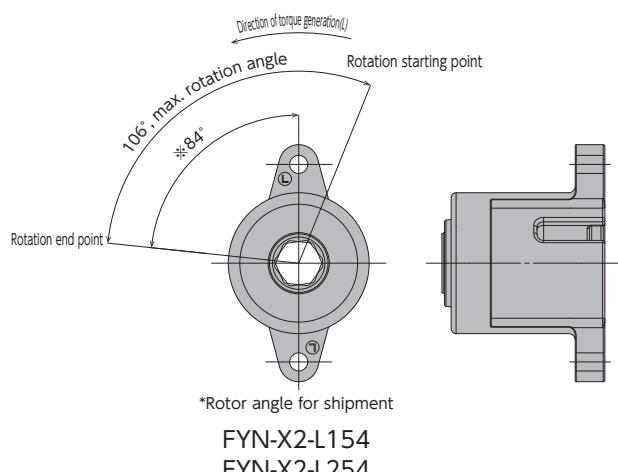
FYN-X2 25N·m specification

- Measuring temperature : Room temperature(23±3°C)
- Load torque : 20~25N·m
- Measuring angle : +30°~-30°


FYN-X2 15N·m specification

- Measuring temperature : Room temperature(23±3°C)
- Load torque : 10~15N·m
- Measuring angle : +30°~-30°

As the level of self-adjustment may vary depending on the range of the working angle of the actual work, please verify under actual working conditions before you select your damper.




●Products specification might be changed without notice.

2. When using the damper, please ensure that a shaft with specified angular dimensions is inserted in the damper's shaft opening. Also, please ensure a tight fit between the shaft and the damper shaft's opening. Without a tight fit, the play becomes larger in a closing motion, etc., and the lid may not slow down properly. Please see the diagrams to the right for the recommended shaft dimensions for a damper.

3. Damper characteristics vary according to the ambient temperature. In general, the damper characteristics become weaker as the temperature increases, and become stronger as the temperature decreases. This is because the viscosity of the oil inside the damper varies according to the temperature. When the temperature returns to normal, the damper characteristics will return to normal as well. The time it takes for the lid to close is shown in the graph to the right.

4. The damper's working angle is 106° as shown below. Rotating the damper beyond this angle will cause the damage to the damper. Please ensure that an external stopper is in place.

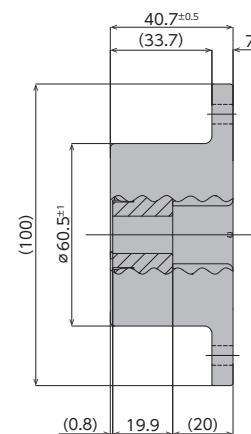
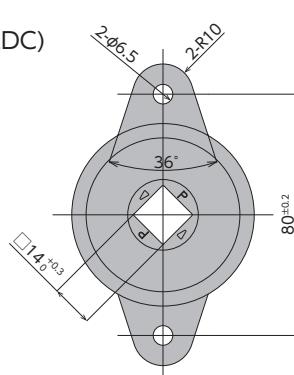

5. Because the FYN-X2 series is a self-adjusting type, the torque cannot be adjusted manually. However, by altering the viscosity of the oil, its damper characteristics can be modified.

* Please contact us, as this is a custom order,

6. The direction in which torque is generated varies according to the model. Please select the appropriate model for your purpose.

Vane Damper

FYN-Z2 Series

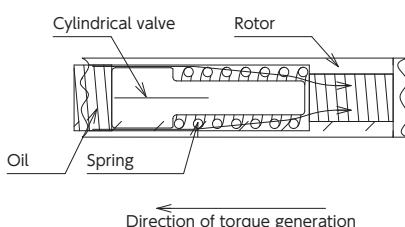



*Max. angle	94°
*Operating temperature	-5~50°C
*Weight	506±10g
*Body material	Zinc die-cast (ZDC)
*Cap material	Iron (SPFC)
*Rotor material	Zinc die-cast (ZDC)
*Oil type	Silicone oil

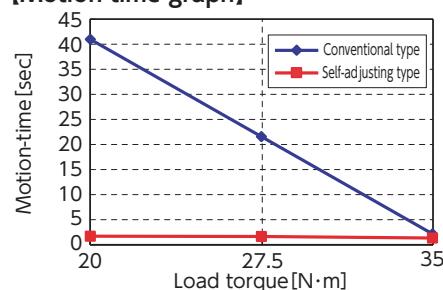
Specifications

Model	Max. torque	Reverse torque	Directions
FYN-Z2-R354	35N·m (350kgf·cm)	3 N·m or lower (30 kgf·cm or lower)	Clockwise
FYN-Z2-L354			Counterclockwise

Note) Measured at 23°C±2°C



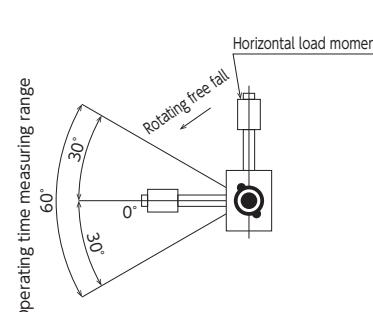
How to Use the Damper


1. Operating characteristics of self-adjusting oscillating dampers

In a conventional oscillating damper, the damping strength (damping constant) does not change regardless of the load torque used. Therefore, the operating speed is slower when the load torque is small, and faster when the load torque is large. However, since the self-adjusting FYN-X2 series is designed to self-adjust the damping strength (damping constant) according to the applied load, its motion-time fluctuates less than that of conventional dampers when the load changes.

The acceptable range of torque is 20 to 35 N·m. Please select your damper by referring to the motion-time graph below.

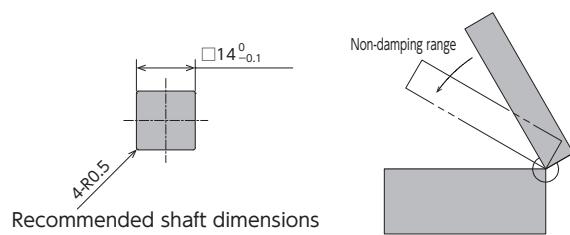
[Motion time graph]



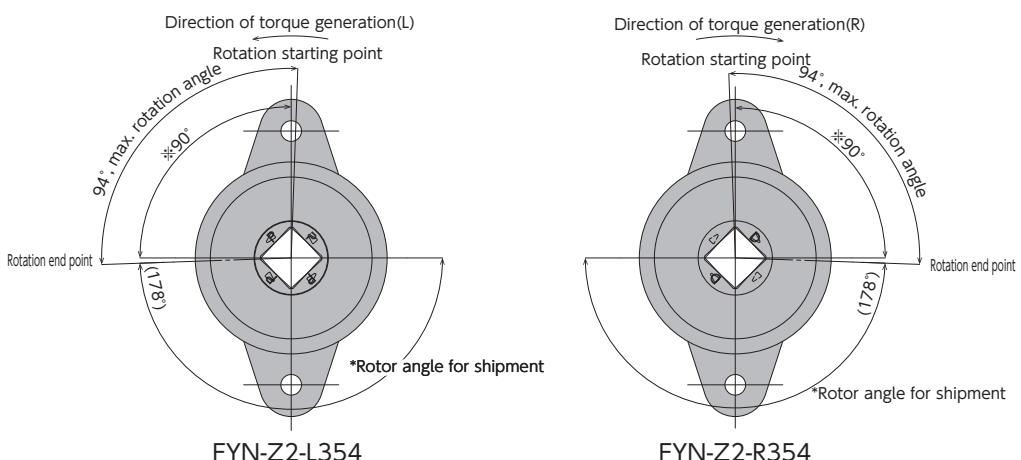
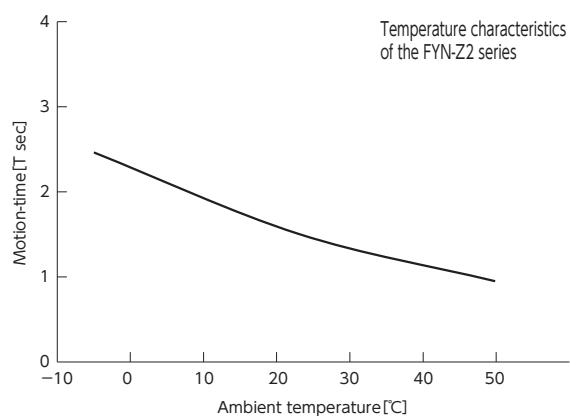
[Operating principles of the self-adjusting type]

As shown in the diagram to the left, the spring compressed by the movement of the cylindrical valve alters the amount of oil flow so as to adjust the generated torque of the damper. (Patent pending)

[Measurement conditions for the motion-time graph]


- Measuring temperature : Room temperature (23±3°C)
- Load torque : 20~35N·m
- Measuring angle: +30°~-30°

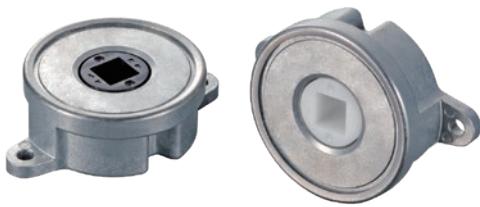
As the level of self-adjustment may vary depending on the range of the working angle of the actual work, please verify under actual working conditions before you select your damper.



●Products specification might be changed without notice.

2. When using the damper, please ensure that a shaft with specified angular dimensions is inserted in the damper's shaft opening. Also, please ensure a tight fit between the shaft and the damper shaft's opening. Without a tight fit, the play becomes larger in a closing motion, etc., and the lid may not slow down properly. Please see the diagrams to the right for the recommended shaft dimensions for a damper.

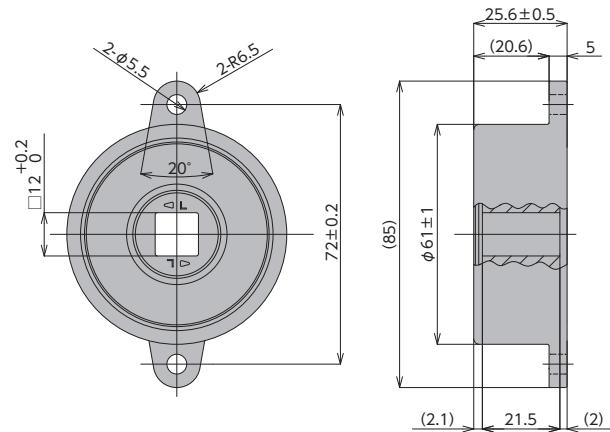
3. Damper characteristics vary according to the ambient temperature. In general, the damper characteristics become weaker as the temperature increases, and become stronger as the temperature decreases. This is because the viscosity of the oil inside the damper varies according to the temperature. When the temperature returns to normal, the damper characteristics will return to normal as well. The time it takes for the lid to close is shown in the graph to the right.

4. The damper's working angle is 94° as shown below. Rotating the damper beyond this angle will cause the damage to the damper. Please ensure that an external stopper is in place.

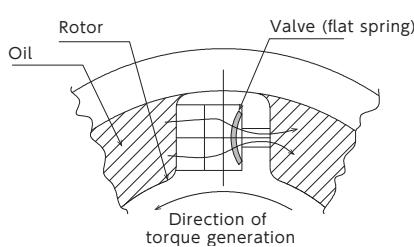

5. Because the FYN-Z2 series is a self-adjusting type, the torque cannot be adjusted manually. However, by altering the viscosity of the oil, its damper characteristics can be modified.

* Please contact us, as this is a custom order,

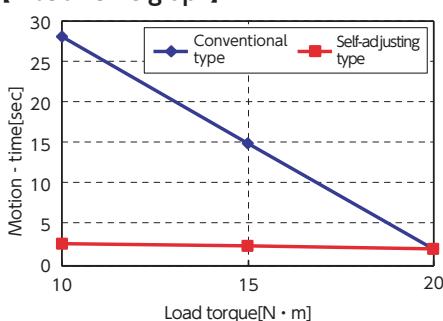
6. The direction in which torque is generated varies according to the model. Please select the appropriate model for your purpose.


Vane Damper

FYN-A2 Series


Model	Max. torque	Reverse torque	Directions
FYN-A2-R204	20N·m (200kgf·cm)	2N·m or lower (20kgf·cm lower)	Clockwise
FYN-A2-L204			Counterclockwise

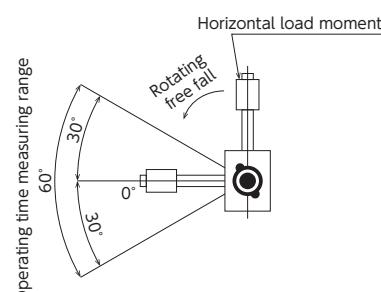
* Max. angles	120°
* Operating temperature	-5 ~ 50° C
* Weight	222 ± 11g
* Body material	Zinc die - cast (ZDC)
* Cap material	Zinc die - cast (ZDC)
* Rotor material	Zinc die - cast (ZDC)
* Oil type	Silicone oil
* Rotary color	L: Black R: White



How to Use the Damper

1. Operating characteristics of self-adjusting oscillating dampers
in a conventional oscillating damper, the damping strength (damping constant) does not change regardless of the load torque used.
Therefore, the operating speed is slower when the load torque is small, and faster when the load torque is large.
However, since the self-adjusting FYN-A2 series is designed to self-adjustable the damping strength(damping constant) according to the applied load, its motion-time fluctuates less than that of conventional dampers when the load changes.
The acceptable range of torque is 10 to 15N·m or 20 to 25N·m. Please select your damper by referring to the motion graph below.

[Motion time graph]

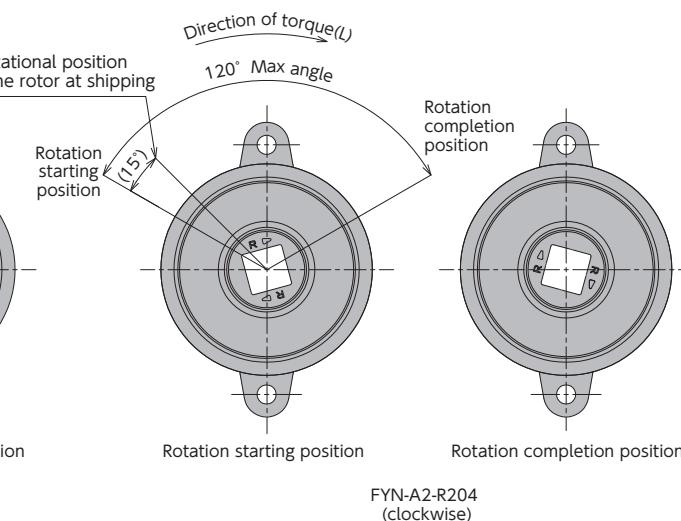
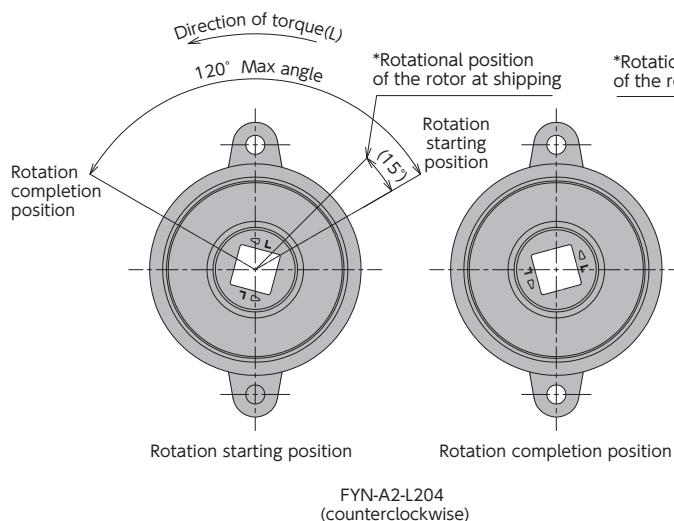
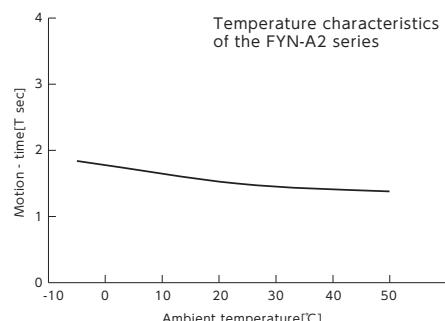
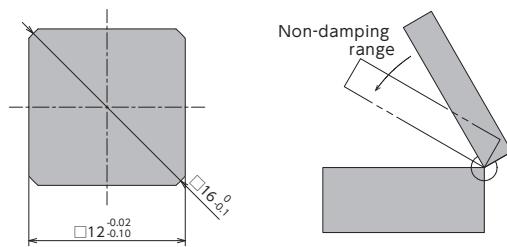


[Operating principles of the self-adjusting type]

As shown in the diagram to the left, by changing the shape of the valve (flat spring), the amount of oil flow is altered, adjusting the damper's generated torque. (PAT.P)

[Measurement conditions for the motion-time graph]

- Measuring temperature : Room temperature($23 \pm 3^\circ\text{C}$)
- Load torque : $10 \sim 20 \text{ N}\cdot\text{m}$
- Measuring angle : $+30^\circ \sim -30^\circ$

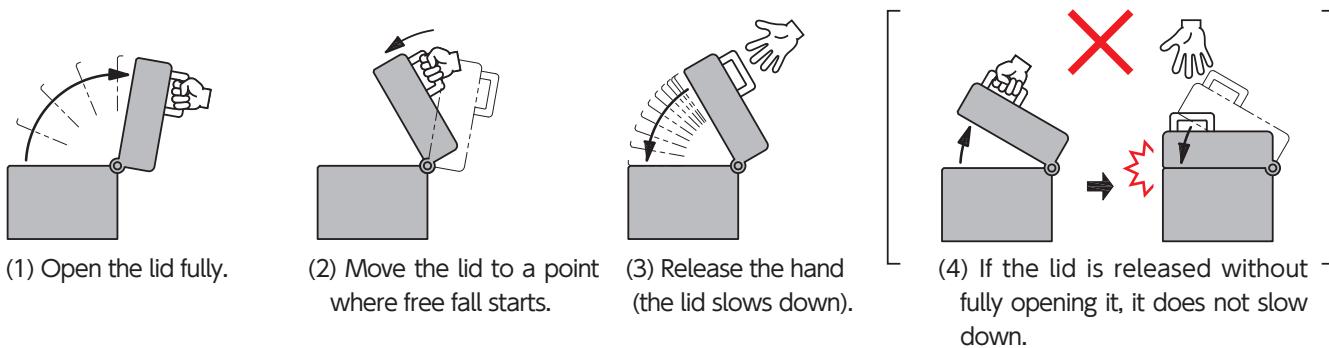




As the level of self-adjustment may vary depending on the range of the working angle of the actual work, please verify under actual working conditions before you select your damper.

●Products specification might be changed without notice.

2. When using the damper, please ensure that a shaft with specified angular dimensions is inserted in the damper's shaft opening. Also, please ensure a tight fit between the shaft and the damper shaft's opening. Without a tight fit, the play becomes larger in a closing motion, etc., and the lid may not slow down properly. Please see the diagrams to the right for the recommended shaft dimensions for a damper.

3. Damper characteristics vary according to the ambient temperature. In general, the damper characteristics become weaker as the temperature decreases. This is because the viscosity of the temperature. When the temperature returns to normal, The damper characteristics will return to normal as well. The time it takes for the lid to close is shown in the graph to the right.

4. The damper's working angle is 120° as shown below. Rotating the damper beyond this angle will cause the damage to the damper. Please ensure that an external stopper is in place.



5. Because the FYN-A2 series is a self-adjusting type, the torque cannot be adjusted manually. However, by altering the viscosity of the oil, its damper characteristics can be modified. (Please contact us, as this is a custom order.) 6. The direction in which torque is generated varies according to the model. Please select the appropriate model for your purpose.

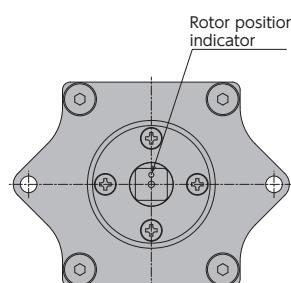
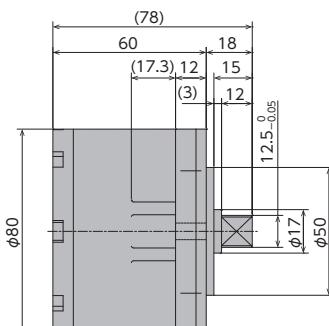
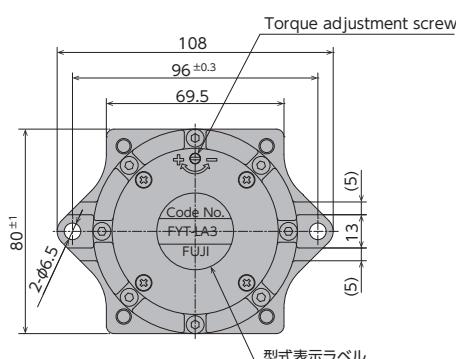
6. The direction in which torque is generated varies according to the model. Please select the appropriate model for your purpose.

Precautions for Use

* When using the vane damper, ensure that after having fully opened the lid, move the lid to a point where free fall starts, and then release the hand from the lid. If the lid is slightly opened and in this state the hand is released, the lid may not be able to sufficiently slow down and the lid may be closed with force, which could result in an injury such as getting the hand caught by the lid.

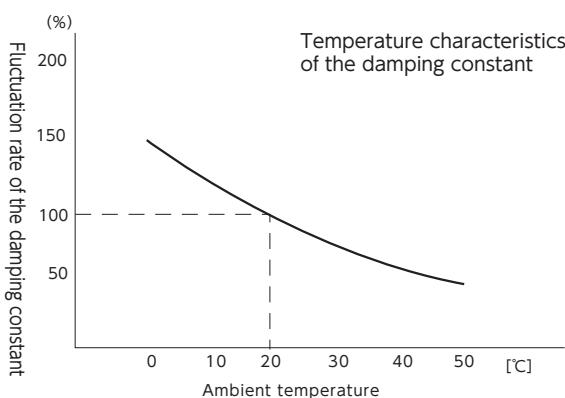
Vane Damper

FYT/FYN-LA3 Series

Specifications

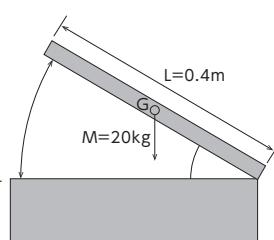
Model	Max. torque	Damping constant	Damping direction
FYT-LA3	40N·m (400kgf·cm)	10~60N·m/(rad/sec)	Both directions
FYN-LA3-R			Clockwise
FYN-LA3-L			Counter-clockwise


Note) Measured at 23°C±2°C

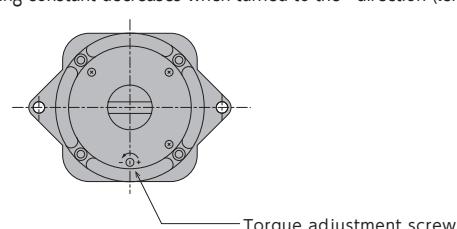
* Max. angle	210°
* Operating temperature	0~50°C
* Weight	1.75k g
* Body and cap material	Zinc die-cast (ZDC)
* Rotating shaft material	Alloy steel
* Oil type	Silicone oil

How to Use the Damper

1. Damper characteristics vary according to the ambient temperature. In general, the damping constant decreases as the temperature increases, and the damping constant increases as the temperature decreases. This is because the viscosity of the oil inside the damper changes according to the temperature. When the temperature returns to normal, the damping constant will return to normal as well.

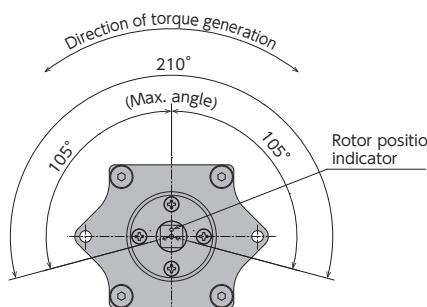
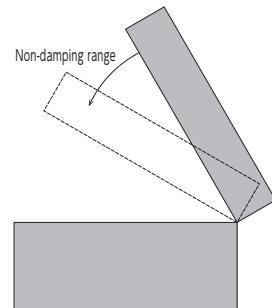

2. When using a damper on a lid, such as the one shown in the diagram, use the following selection calculation to determine the damper torque.

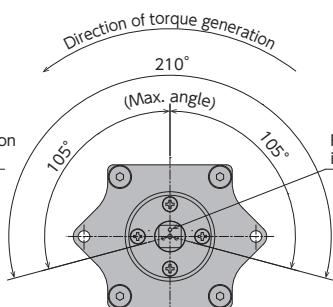
Example)


Lid mass M : 20kg

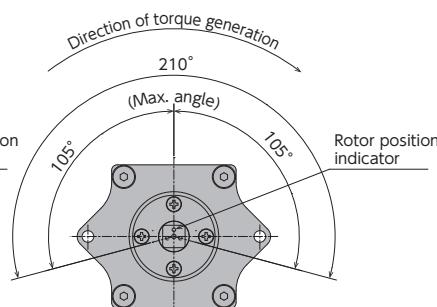
Lid dimensions L : 0.4m

Gravity Center Position : Assumed as $\frac{L}{2}$
Load torque : $T = 20 \times 0.4 \times 9.8 \div 2$

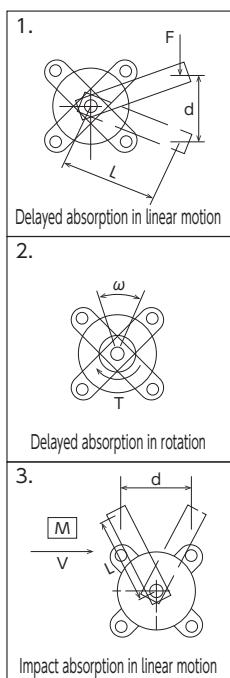


3. FYT, FYN-LA3 series are torque-adjustable types. Turn the damping adjustment screw located on the back of the main body by inserting a slotted screwdriver. The damping constant increases when turned to the + direction (right). The damping constant decreases when turned to the - direction (left).


●Products specification might be changed without notice.

Instruction for Damper Attachment


- When attaching a rotating shaft to its corresponding part, ensure that they are firmly attached together by making the gap between them as small as possible. A large gap may affect the damper's non-damping range, preventing the lid from slowing down properly.
- The damper's working angle is $\pm 105^\circ$, as shown on the right (second diagram). Please determine where to attach it according to your needs.
- The direction in which torque is generated varies according to the model. Please select the appropriate model for your purpose.
- Do not use the damper as a stopper. An external stopper must be attached at the stopping position.
- In FYN-LA3-L and FYN-LA3-R, the angular velocity in the reverse direction (opposite to the direction of torque generation) should be 1 rad/sec or less.

FYT-LA3



FYN-LA3-L

FYN-LA3-R

How to Calculate the Damping Constant for Vane Dampers

1. Delayed absorption in linear motion

$$\text{Formula (N·m/(rad/sec))} = \frac{FL^2t}{d}$$

F = Force or mass applied to the lever tip (N)

L = Distance between the centre of the damper shaft and the lever's point of application (m)

d = Distance travelled by lever (m)

t = Travelling time of the lever (sec)

2. Delayed absorption in rotation

$$\text{Formula (N·m/(rad/sec))} = \frac{T}{\omega}$$

T = Torque applied to shaft (N·m)

ω = Angular velocity(rad/sec)

3. Impact absorption in linear motion

$$\text{Formula (N·m/(rad/sec))} = \frac{MVL^2}{d}$$

M = Mass(kg)

V = Velocity(m/sec)

L = Distance between the centre of the damper shaft and the lever's point of application (m)

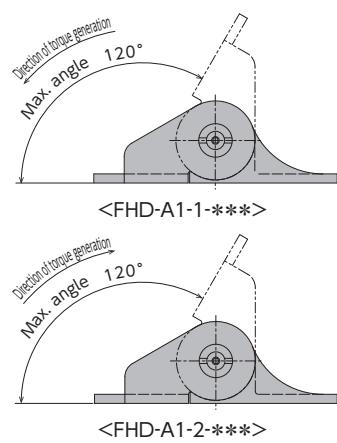
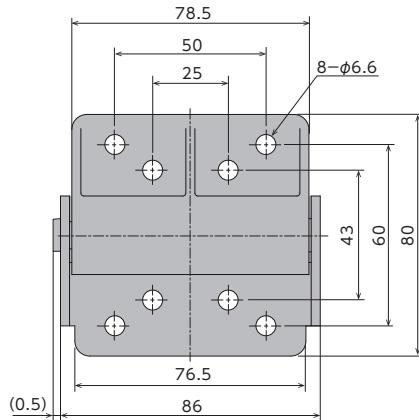
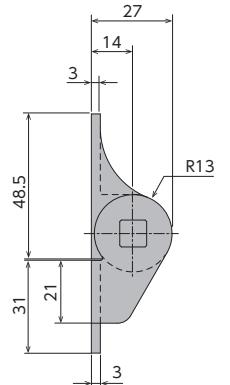
d = Distance travelled by lever (m)

Hinge Damper

FHD-A1 Series

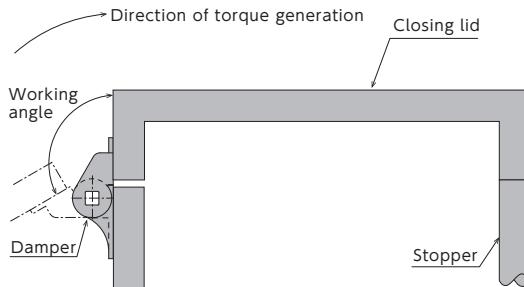
Bi-Directional
Uni-Directional
Fixed Type
Adjustable type
Self-adjusting

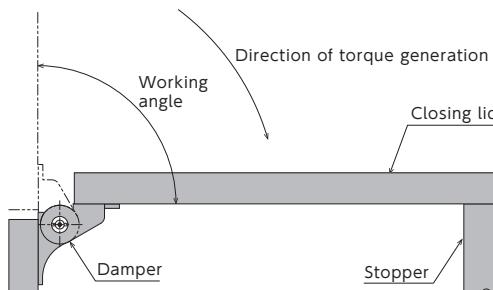
RoHS Compliant




●Products specification might be changed without notice.

Specifications

Model	Max. torque	Max. reverse torque
FHD-A1-1-503	5N·m (50 kgf·cm)	0.6N·m or lower (6kgf·cm or lower)
FHD-A1-2-503		
FHD-A1-1-104	10N·m (100 kgf·cm)	1N·m or lower (10kgf·cm or lower)
FHD-A1-2-104		

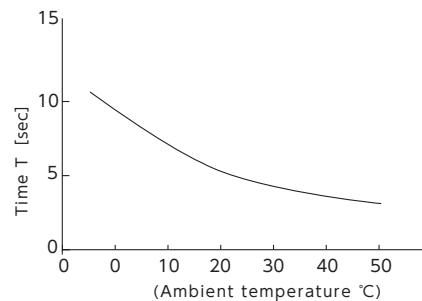

* Max. angle 120° * Main body material Zinc die-cast (ZDC) + silver coating
 * Operating temperature -5~50°C * Hinge material SUS304
 * Weight 410g * Oil type Silicone oil


How to Use the Damper

1. There are two ways to attach the damper, as shown below.

○Attached externally(FHD-A1-1***)

○Attached internally(FHD-A1-2***)



2. This damper is only for horizontal application. Please do not use this damper for vertical application.

Damper Characteristics

1. Temperature characteristics

Damper characteristics vary according to the ambient temperature. In general, the damper characteristics become weaker as the temperature increases, and become stronger as the temperature decreases. This is because the viscosity of the oil inside the damper varies according to the temperature. When the temperature returns to normal, the damper characteristics will return to normal as well.

2. The working angle of the hinge is 120° .

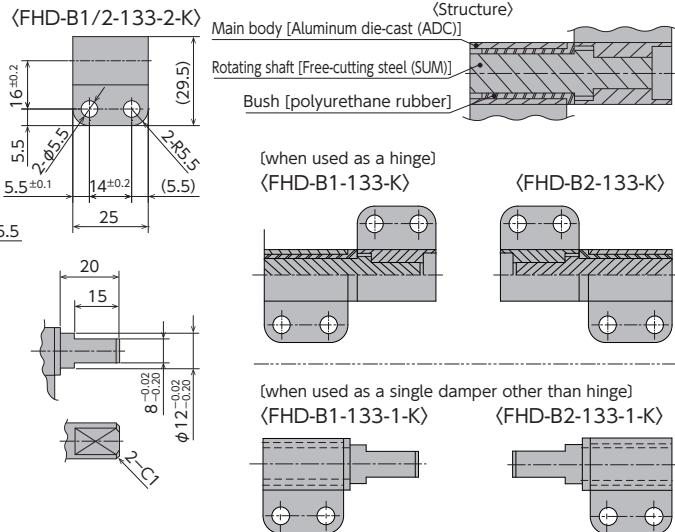
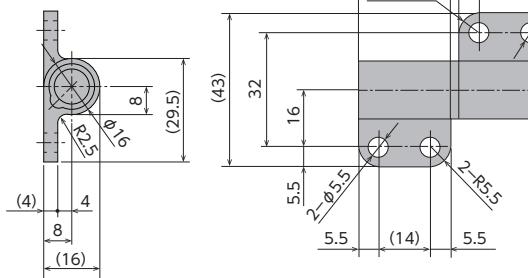
Operating the hinge beyond this angle will cause damage to the hinge. Please ensure that an external stopper is in place.

Friction Type Hinge Damper

Bi-Directional Uni-Directional
Fixed Type Adjustable type Self-adjusting

FHD-B1/B2 Series

RoHS Compliant

Specifications

Model	Max. torque
FHD-B1-133-K	1.35±0.34 N·m (13.5±3.4 kgf·cm)
FHD-B2-133-K	
FHD-B1-133-1-K	1.35±0.34 N·m (13.5±3.4 kgf·cm)
FHD-B2-133-1-K	
FHD-B1-133-2-K	
FHD-B2-133-2-K	

Note) Damper torque was measured at 25°C±2°C at 2rpm

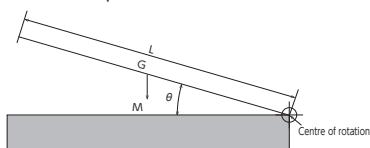
- * Max. rotation speed 15rpm
- * Max. cycle rate 5cycle / min
- * Operating temperature 0°C~60°C
- * Weight FHD-B1/B2-133 :50 g
FHD-B1/B2-133-1:40 g

How to Use the Damper

1. The damper generates torque in both clockwise and counter-clockwise directions.
2. A friction-type hinge damper can be used as a bearing.
3. Friction-type hinge dampers have a long product life and do not require lubrication.
4. Torque down will result if the damper part gets wet with water or oil.
5. It cannot be used for continuous rotation. Please use it in a vane motion.
6. Depending on the operating conditions, it can be used as a free-stop hinge. Please calculate the retention torque based on the following equation.

$$\text{Retention torque } \alpha = \frac{M \times 9.8 \times \frac{L}{2} \times \cos\theta}{0.65 \times \alpha \times N} \text{ (N·m)}$$

Retention temperature	α
Room temperature (25±5°C)	1.0
MAX40°C	0.75
MAX60°C	0.50

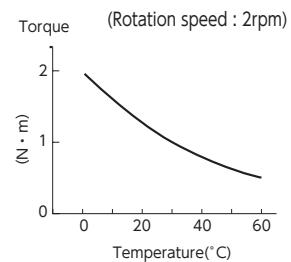

M : Mass of the retaining part

L : Distance between the tip of retaining part and the centre of rotation

θ : Retention angle from the retaining part's horizontal position

α : Temperature coefficient of the max. temperature

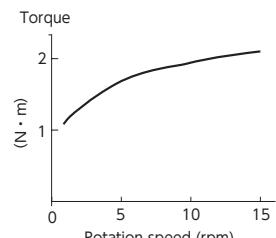
N : Number of dampers used



7. This damper is only for horizontal application. Please do not use this damper for vertical application.

Damper Characteristics

1. Temperature characteristics


Damper characteristics vary according to the ambient temperature. In general, the damper characteristics become weaker as the temperature increases, and become stronger as the temperature decreases. This is because the temperature of the shaft bush inside the damper varies according to the temperature. When the temperature returns to normal, the damper characteristics will return to normal as well.

2. Speed characteristics

The speed characteristics of a friction-type hinge damper are shown in the graph below. The damper torque is determined based on the speed characteristics at 2rpm.

(Measurement temperature : 25°C±2°C)
(Working angle : 90°)

Friction Damper

FFD-25FS/FW/SS/SW Series

Bi-Directional
Uni-Directional
Fixed Type
Adjustable type
Self-adjusting

RoHS Compliant

●Products specification might be changed without notice.

Specifications

Model	Max. torque	Max. reverse torque	Model	Max. torque	Max. reverse torque
FFD-25FS-R102	0.1±0.01 [N·m]	Clockwise	FFD-25SS-R102	0.1±0.01 [N·m]	Clockwise
FFD-25FS-L102	(1±0.1 kgf·cm)	Counter-clockwise	FFD-25SS-L102	(1±0.1 kgf·cm)	Counter-clockwise
FFD-25FS-R502	0.5±0.05 [N·m]	Clockwise	FFD-25SS-R502	0.5±0.05 [N·m]	Clockwise
FFD-25FS-L502	(5±0.5 kgf·cm)	Counter-clockwise	FFD-25SS-L502	(5±0.5 kgf·cm)	Counter-clockwise
FFD-25FS-R103	1±0.1 [N·m]	Clockwise	FFD-25SS-R103	1±0.1 [N·m]	Clockwise
FFD-25FS-L103	(10±1 kgf·cm)	Counter-clockwise	FFD-25SS-L103	(10±1 kgf·cm)	Counter-clockwise
FFD-25FW-R103	1±0.1 [N·m]	Clockwise	FFD-25SW-R103	1±0.1 [N·m]	Clockwise
FFD-25FW-L103	(10±1 kgf·cm)	Counter-clockwise	FFD-25SW-L103	(10±1 kgf·cm)	Counter-clockwise
FFD-25FW-R153	1.5±0.15 [N·m]	Clockwise	FFD-25SW-R153	1.5±0.15 [N·m]	Clockwise
FFD-25FW-L153	(15±1.5 kgf·cm)	Counter-clockwise	FFD-25SW-L153	(15±1.5 kgf·cm)	Counter-clockwise
FFD-25FW-R203	2±0.2 [N·m]	Clockwise	FFD-25SW-R203	2±0.2 [N·m]	Clockwise
FFD-25FW-L203	(20±2 kgf·cm)	Counter-clockwise	FFD-25SW-L203	(20±2 kgf·cm)	Counter-clockwise

*) Rated torque is measured at a rotation speed of 20rpm at 20°25°C

*Max. rotation speed

30rpm

*Cap colour

R:Black L:White

*Max. cycle rate

13cycle/min

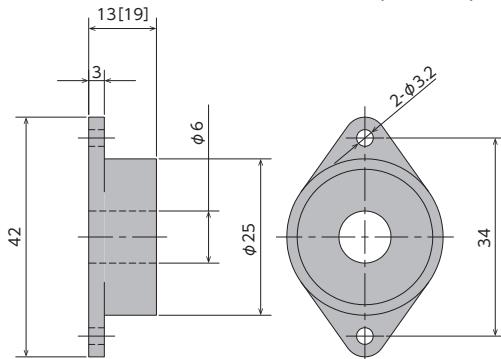
*Weight

FFD-25FS 13±2g

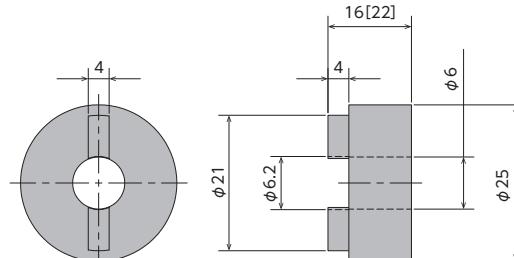
*Operating temperature

-10~60°C

FFD-25FW 24±2g


(90%RH)

FFD-25SS 12±2g


*Body and cap material

POM

FFD-25SW 23±2g

FFD-25FS-****
(Dimension of FFD-25FW-**** are in [])

FFD-25SS-****
(Dimension of FFD-25SW-**** are in [])

How to Use the Damper

- The damper generates torque in both the clockwise and counter-clockwise directions. (A one-way clutch is built in inside the damper.)
- Please make sure that the shaft attached to a damper has a bearing, as the damper itself is not fitted with one.
- It can be used as a free-stop for a load that is smaller than the rated torque.
- Please refer to the recommended dimensions below when creating a shaft for attachment to the damper. Using a shaft outside of the recommended dimensions may cause the shaft to slip out.

Shaft's external dimensions	6 $\phi_{0.03}$
Surface hardness	HRC55 or higher
Quenching depth	0.5mm or higher
Surface roughness	1.0Z or lower
Chamfer end (Damper insertion side)	<p>C0.2~C0.3 (or R0.2~R0.3)</p>

- To insert a shaft into the damper, insert the shaft while spinning it in the opposite direction of the damper's direction of torque generation. (Do not force the shaft in from a regular direction. This may damage the built-in one-way clutch.)

Friction Damper

FFD-28FS/FW/SS/SW Series

Bi-Directional Uni-Directional
Fixed Type Adjustable type Self-adjusting

RoHS Compliant

● Products specification might be changed without notice.

Specifications

Model	Max. torque	Max. reverse torque	Model	Max. torque	Max. reverse torque
FFD-28FS-R102	0.1±0.01 (N·m)	Clockwise	FFD-28SS-R102	0.1±0.01 (N·m)	Clockwise
FFD-28FS-L102	(1±0.1 kgf·cm)	Counter-clockwise	FFD-28SS-L102	(1±0.1 kgf·cm)	Counter-clockwise
FFD-28FS-R502	0.5±0.05 (N·m)	Clockwise	FFD-28SS-R502	0.5±0.05 (N·m)	Clockwise
FFD-28FS-L502	(5±0.5 kgf·cm)	Counter-clockwise	FFD-28SS-L502	(5±0.5 kgf·cm)	Counter-clockwise
FFD-28FS-R103	1±0.1 (N·m)	Clockwise	FFD-28SS-R103	1±0.1 (N·m)	Clockwise
FFD-28FS-L103	(10±1 kgf·cm)	Counter-clockwise	FFD-28SS-L103	(10±1 kgf·cm)	Counter-clockwise
FFD-28FW-R103	1±0.1 (N·m)	Clockwise	FFD-28SW-R103	1±0.1 (N·m)	Clockwise
FFD-28FW-L103	(10±1 kgf·cm)	Counter-clockwise	FFD-28SW-L103	(10±1 kgf·cm)	Counter-clockwise
FFD-28FW-R153	1.5±0.15 (N·m)	Clockwise	FFD-28SW-R153	1.5±0.15 (N·m)	Clockwise
FFD-28FW-L153	(15±1.5 kgf·cm)	Counter-clockwise	FFD-28SW-L153	(15±1.5 kgf·cm)	Counter-clockwise
FFD-28FW-R203	2±0.2 (N·m)	Clockwise	FFD-28SW-R203	2±0.2 (N·m)	Clockwise
FFD-28FW-L203	(20±2 kgf·cm)	Counter-clockwise	FFD-28SW-L203	(20±2 kgf·cm)	Counter-clockwise

*) Rated torque is measured at a rotation speed of 20rpm at 20~25°C

* Max. rotation speed

30rpm

*Cap colour

R:Black L:White

* Max. cycle rate

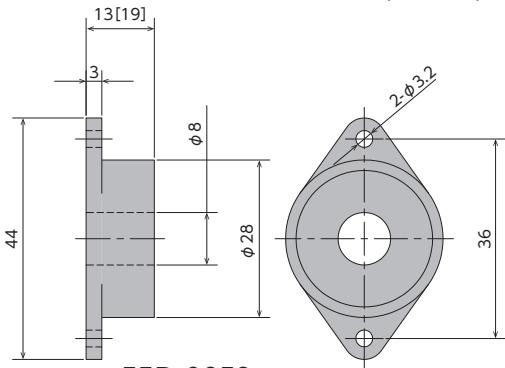
13cycle/min

FFD-28FS 14±2g

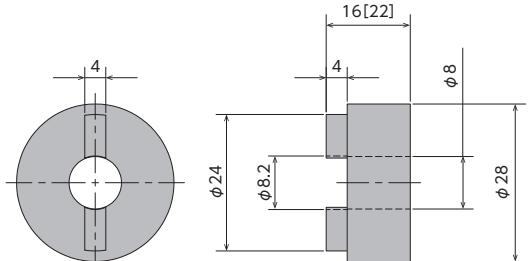
* Operating temperature

–10 ~60°C

FFD-28FW 27±2g


(90%RH)

FFD-28SS 14±2g


*Body and cap material

POM

FFD-28SW 25±2g

FFD-28FS-****
(Dimension of FFD-28FW-**** are in [])

FFD-28SS-****
(Dimension of FFD-28SW-**** are in [])

How to Use the Damper

1. The damper generates torque in both the clockwise and counter-clockwise directions. (A one-way clutch is built in inside the damper.)
2. Please make sure that the shaft attached to a damper has a bearing, as the damper itself is not fitted with one.
3. It can be used as a free-stop for a load that is smaller than the rated torque.
4. Please refer to the recommended dimensions below when creating a shaft for attachment to the damper. Using a shaft outside of the recommended dimensions may cause the shaft to slip out.
5. To insert a shaft into the damper, insert the shaft while spinning it in the opposite direction of the damper's direction of torque generation. (Do not force the shaft in from a regular direction. This may damage the built-in one-way clutch.)

Shaft's external dimensions	8-φ _{0.03}
Surface hardness	HRC55 or higher
Quenching depth	0.5mm or higher
Surface roughness	1.0Z or lower
Chamfer end (Damper insertion side)	<p>C0.2~C0.3 (or R0.2~R0.3)</p>

Friction Damper

Bi-Directional Uni-Directional
Fixed Type Adjustable type Self-adjusting

FFD-30FS/FW/SS/SW Series

RoHS Compliant

●Products specification might be changed without notice.

Specifications

Model	Max. torque	Max. reverse torque	Model	Max. torque	Max. reverse torque
FFD-30FS-R102	0.1±0.01 [N·m]	Clockwise	FFD-30SS-R102	0.1±0.01 [N·m]	Clockwise
FFD-30FS-L102	(1±0.1 kgf·cm)	Counter-clockwise	FFD-30SS-L102	(1±0.1 kgf·cm)	Counter-clockwise
FFD-30FS-R502	0.5±0.05 [N·m]	Clockwise	FFD-30SS-R502	0.5±0.05 [N·m]	Clockwise
FFD-30FS-L502	(5±0.5 kgf·cm)	Counter-clockwise	FFD-30SS-L502	(5±0.5 kgf·cm)	Counter-clockwise
FFD-30FS-R103	1±0.1 [N·m]	Clockwise	FFD-30SS-R103	1±0.1 [N·m]	Clockwise
FFD-30FS-L103	(10±1 kgf·cm)	Counter-clockwise	FFD-30SS-L103	(10±1 kgf·cm)	Counter-clockwise
FFD-30FS-R153	1.5±0.15 [N·m]	Clockwise	FFD-30SS-R153	1.5±0.15 [N·m]	Clockwise
FFD-30FS-L153	(15±1.5 kgf·cm)	Counter-clockwise	FFD-30SS-L153	(15±1.5 kgf·cm)	Counter-clockwise
FFD-30FW-R153	1.5±0.15 [N·m]	Clockwise	FFD-30SW-R153	1.5±0.15 [N·m]	Clockwise
FFD-30FW-L153	(15±1.5 kgf·cm)	Counter-clockwise	FFD-30SW-L153	(15±1.5 kgf·cm)	Counter-clockwise
FFD-30FW-R203	2±0.2 [N·m]	Clockwise	FFD-30SW-R203	2±0.2 [N·m]	Clockwise
FFD-30FW-L203	(20±2 kgf·cm)	Counter-clockwise	FFD-30SW-L203	(20±2 kgf·cm)	Counter-clockwise
FFD-30FW-R253	2.5±0.25 [N·m]	Clockwise	FFD-30SW-R253	2.5±0.25 [N·m]	Clockwise
FFD-30FW-L253	(25±2.5 kgf·cm)	Counter-clockwise	FFD-30SW-L253	(25±2.5 kgf·cm)	Counter-clockwise
FFD-30FW-R303	3±0.3 [N·m]	Clockwise	FFD-30SW-R303	3±0.3 [N·m]	Clockwise
FFD-30FW-L303	(30±3 kgf·cm)	Counter-clockwise	FFD-30SW-L303	(30±3 kgf·cm)	Counter-clockwise

*) Rated torque is measured at a rotation speed of 20rpm at 20°25°C

* Max. rotation speed

30rpm

*Cap colour

R:Black L:White

* Max. cycle rate

13cycle/min

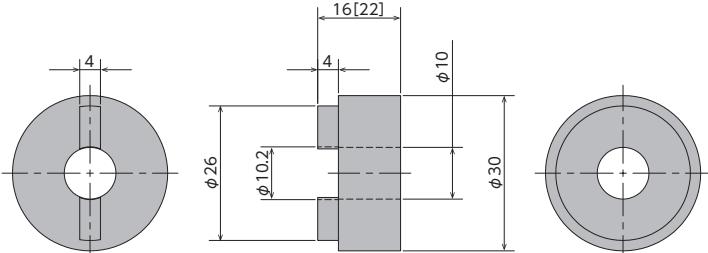
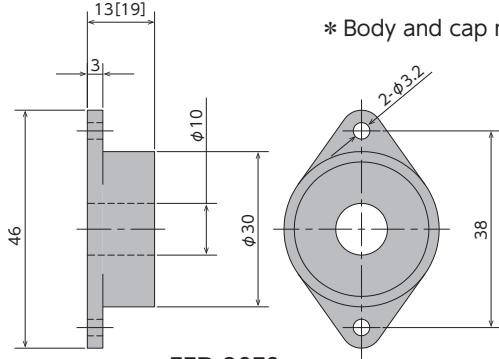
* Weight

FFD-30FS 17±2g

* Operating temperature

-10 ~60°C

FFD-30FW 31±2g



(90%RH)

FFD-30SS 16±2g

* Body and cap material

POM

FFD-30SW 30±2g

How to Use the Damper

1. The damper generates torque in both the clockwise and counter-clockwise directions. (A one-way clutch is built in inside the damper.)

3. It can be used as a free-stop for a load that is smaller than the rated torque.

2. Please make sure that the shaft attached to a damper has a bearing, as the damper itself is not fitted with one.

4. Please refer to the recommended dimensions below when creating a shaft for attachment to the damper. Using a shaft outside of the recommended dimensions may cause the shaft to slip out.

Shaft's external dimensions	Φ 10 _{-0.03}
Surface hardness	HRC55 or higher
Quenching depth	0.5mm or higher
Surface roughness	1.0Z or lower

Chamfer end (Damper insertion side)	
--	--

5. To insert a shaft into the damper, insert the shaft while spinning it in the opposite direction of the damper's direction of torque generation. (Do not force the shaft in from a regular direction. This may damage the built-in one-way clutch.)

Read these instructions before use

This owner's manual contains various safety cautions regarding the proper handling of this product, and preventing danger to the operator as well as damage to the plant and the machine. Please read this manual thoroughly before using the product.

New products

1 Soft Absorber

2 Rotary Damper

3 Magnum Series

4 Speed Controller

5 Helical Isolator

6 Model Selection Form

Warning

Definition of Warning

"Warning" applies to situations in which death or serious injuries may occur to the user, etc. if the potential dangers of the products are not avoided.

The decision on the suitability of MRF damper shall be made by an engineer of the equipment or a person who determine the specification.

- Because of the wide variety of conditions of use, the decision on the suitability of MRF damper shall be made by an engineer of the equipment or a person who determine the specification, after the performance verification and life test as necessity.

Do not use the MRF damper outside the range of specification.

- Do not use outside the range of specification for such like operating temperature range, rated voltage and current of the coil, the rated torque, the allowable slip rate, maximum rotational speed.
- There is a risk to receive injury or to make damage for MRF damper and/or peripheral devices.
- There is a risk of Electric shock, burns or fire.
- Due to oil leakage or deterioration of parts, there is a possibility that the durability of the product is significantly decreased.
- Refer to the product page of MRF damper for details.
- When used, it generates heat by energization and or the slip friction of the coil. If the temperature of MRF damper surface is high, adjust the condition and make its surface under 70 °C and prevent the generation of heat.

Implementation of Safety Measures for the Purposes Below.

- Implement the safety measures if used under the following conditions and environment, and consult our company for a judgment on the feasibility check beforehand. Also please take countermeasures against waterproofing, humid proofing as well as the designing of fail-safe, redundant and etc. for the purpose to keep the reliability of safety of the device as user's responsible task.

- 1) The use in the environment other than those standard specifications clearly indicated in the catalog or owner's manual, outdoors, or place exposed to the direct sunlight.

- 2) Nuclear related devices, devices directly or indirectly related to the running of rail or ship, devices related to aviation or space, military devices, medical devices, devices contacting the potions and foods, combustion equipment, amusement devices that are related to the influence on human and properties, emergency shut off circuit, press machinery, the use for the devices or purposes to which especially the safety is required because of the expected serious influence on the human and properties.

- Environment and the next safety exhibit can not be secured, please do not use the following devices that are required extremely high reliability and safety.

- 1) environment in which there is a possibility of ignition or explosion, or in water or a very high humid.

- 2) device in relate to the nuclear power, aviation, space, military, life supporting medical equipment, combustion etc.

When you touch the MRF dampers, confirm the power supply of the coil and the peripheral devices are switched off and the temperature of MRF damper is cooled down.

- There is a risk of Electric shock, burns or fire if to mount or dis-mount the MRF damper during the operation of peripheral device or powering the MRF damper.

Ensure the connection of coil lean of MRF damper.

- There is a risk of operation failure, electrical shock or leak if the connection of the leads is incomplete electrically or mechanically.

Do not throw into a fire

As the products contain oil, throwing them into a fire may cause them to ignite, resulting in injuries.

Caution

Definition of "Caution"

"Caution" applies to situations in which minor injuries or property damage may result if the operation or maintenance procedures are not strictly followed.

Do not operate without sufficient mounting strength

- Operating with insufficient mounting strength may damage the main machine and cause injuries.
- Ensure sufficient mounting strength of load torque x safety factor

Do not pull or hang the MRF damper by the leads.

- There is a risk of injury by the fall of MRF damper. Also there is a risk that the leads shall cut and results operational failure or electrical shock or short-circuit.
- Hold the MRF damper when mounting or dis-mounting.
- After the installation, make sure to fix the leads not to contact with MRF damper or with peripheral devices.

Do not rotate the screw on top of MRF damper

- Screw on top of MRF damper is the sealing for oil filling. Do not rotate it otherwise it may cause oil leakage or quality deterioration.

Usage environment

- This product cannot be used in a vacuum or under high pressure as well as in the circumstance where is impact. It may cause damage to the MRF damper or Peripheral equipment
- Do not use in an environment where chips, cutting oil, water, etc. can come in contact with the linear damper. This will result in a malfunction due to an oil leak caused by damage.
- Do not leave or use under the circumstance where is a high humid.

Do not discard oil more than is necessary

- Discarding the oil contained in MRF dampers more than is necessary will pollute the environment.
- Dispose the oil according to laws concerning waste management and cleaning.

Radial/Thrust load to the shaft

- Applying load to the rotating shaft (gear) in a radial/thrust direction may cause an oil leak, torque problems, and damage to the main unit (or to the gear, or cause the gear to become disengaged, if the gear is used).

Do not repair, disassemble or modify the MRF damper

- MRF damper is not corresponded with repairing. In the even of failure and deterioration of performance, please replace it with a new one.
- It is contained the excitation coil and oil in inside of MRF damper. For safety reason, do not repair, disassemble or modify by yourself.
- If the remodeling to MRF damper (additional machining, painting, welding, hardening, etc.) has been carried out, we do not guarantee the MRF damper as well as peripheral equipment.
- Any damage or loss won't be indemnified if the customer performed the repairing, disassembly and modification of MRF damper.

Replacing time of MRF damper

- Product reliable cycles are depended on the using circumstances and conditions; therefore, we cannot determine the life cycle however if there is phenomena such like below please consider that it is the time to replace to the new one.

1. When the necessary torque is no longer performed even though given rated current.
2. When the torque started to be appeared without giving electric current.
3. When various torque started to be appeared under a same circumstance.
4. When abnormal noise, vibration or oil leakage are started to be appeared.

- In particular, high reliability and safeties is required, regardless the phenomenon such like above, we strongly recommend to replace to the new one periodically.

Over-tightening of mounting screws

- Over-tightening the mounting screws when installing a MRF damper may cause damage to the main unit.

Based on the types and sizes of the screws used, please apply an appropriate tightening torque to tighten the screws.

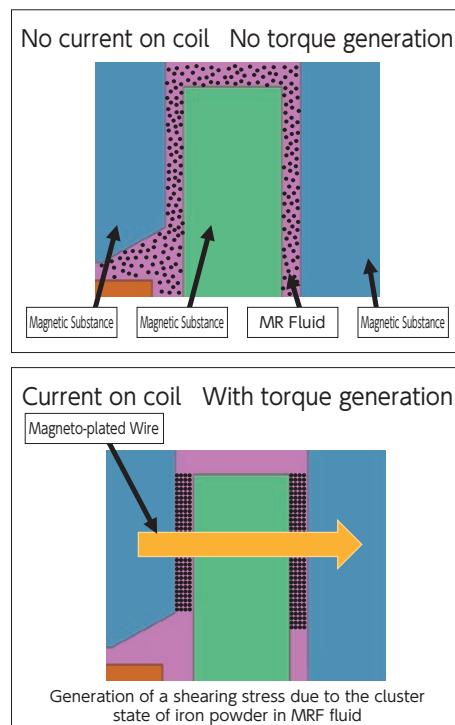
- Use a proper sized screw as the screwing hall of MRF damper is M4 x 5.5 depth. As for tighten torque, make sure under 550N.cm.

Dispose

- In case to dispose the MRF damper, follow the local rules and dispose as industrial waste.

MRF Damper

FMR-70S-403




Characteristics

Electrically controlled	: Enabled electrically controlling the torque by using MR fluid (magnetic viscous fluid)
High response	: excellent electrical response makes realize a high response
Flexible mounting ways	: No restriction on the mounting direction
Not required Pre-conditioning operation	: Using MR fluid on friction part, it realized less humid effect and no requirement of pre-conditioning
Smooth motion	: Small differences between the static friction and dynamic friction allows a smooth actuation
Long life	: Our original sealing structure realizes a long life cycle
Seamless torque change	: Available a seamless torque control steplessly
Less susceptibility of temperature affect	: Comparing to a standard rotary damper, small effect by temperature
Less susceptibility of the rotational speed affect	: Comparing to a standard rotary damper, small effect by the rotating speed

Basic Structure and Action

The basic structure of MRF damper is shown below.

Behavior

The rotating shaft is supported with the bearings for providing the freedom of rotation in the main unit casing. A coil is implemented in the main unit casing, and a rotor having the shape of a cup is mounted on the rotating shaft. There is a gap between the internal surface of the main unit casing and the external surface of the rotor. The MR fluid is filled in this gap. When a current is supplied to the coil, a magnetic field line runs through the gap between the main unit casing and rotor, and a magnetic force flows in the MR fluid. When a magnetic force flows in the MR fluid, the iron power is linked like a chain and the friction force of iron powder generates a force to restrict the rotation between the main unit casing and rotor.

What is the MR Fluid?

The MR (magneto-rheological) Fluid is a functional fluid that can be instantly reversibly changed between free liquid and semi-solid state by varying the applied magnetic field. The MR Fluid is featured with the wide shearing stress variation range based on the yield point determined by the semi-solid fluid due to the formation of chain type clusters of iron powder particles induced by the application of magnetic field in the dispersed micron size magnetic iron powders in the carrier fluid differently from general magnetic fluid.

MR Fluid

MR Fluid A magnet in the proximity

Main Applications

The applications for robots, welfare devices, logistics, amusements, operation levers, switchgears and the torque controls for vibration control devices are expected.

Precautions for Use

Be sure to carefully read the owner's manual delivered with the product before using.

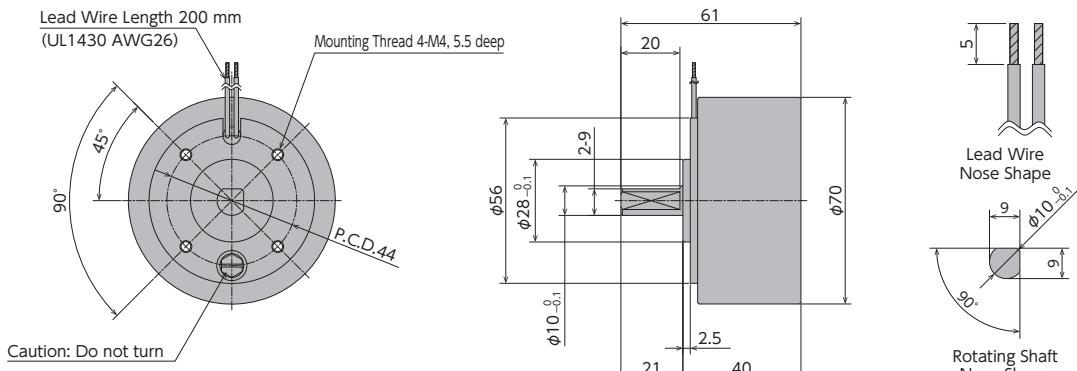
●Products specification might be changed without notice.

Specifications

Type	Rated Torque N·m	Coil (23°C)				Allowable slipping efficiency W
		Voltage V	Current A	Resistance Ω	Capacity W	
FMR-70S-403	4	DC24	0.13	192	3.12	10 ^{**1}
	Maximum Operating Speed rpm	Mounting Posture	Direction of Rotation	Mass kg	Moment of Inertia kg·cm ²	
	50	No restriction	Both directions	0.83	1.16	

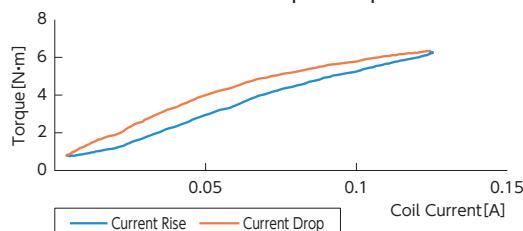
Temperature Range for Use: 0°C to 40°C The heat is generated from coil and the slipping friction during operation. The surface temperature of the product during operation shall not exceed 70°C.

* For a continuous slipping application, the friction heat shall be taken into consideration. The operation shall be within the allowable slipping efficiency range.

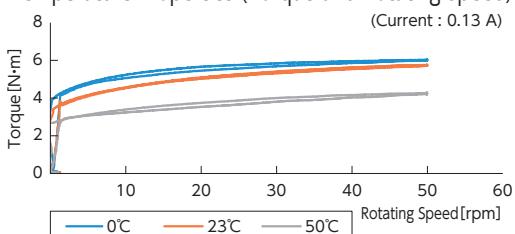

Calculation

$$\text{Allowable slipping efficiency} = 2 \times \pi / 60 \times n \times T_c$$

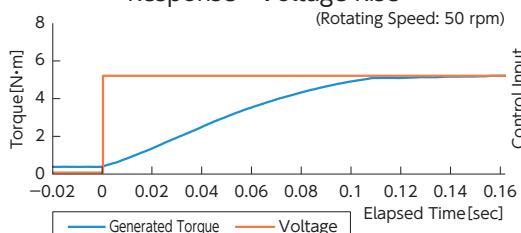
n : Rotating Speed (rpm)

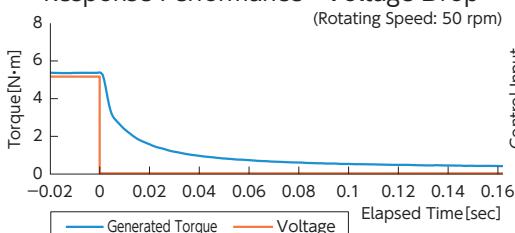

Tc : Slipping Torque (N·m)

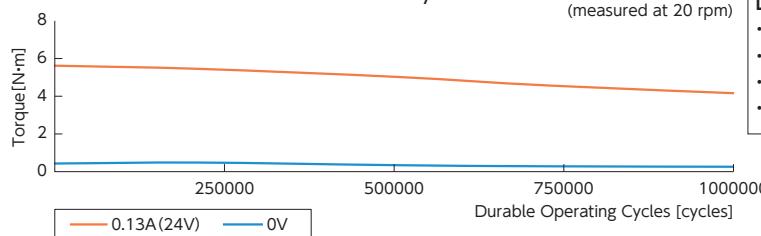
	Material	Surface Treatment
Main Unit Casing	Metal (SUM)	Non-Electrolytic Nickel Plating
Rotating Shaft	Metal (SUM)	Nitriding
Cap	Polyacetal (POM)	—



Test Data


Coil Current - Torque Properties


Temperature Properties (Torque and Rotating Speed)


Response - Voltage Rise

Response Performance - Voltage Drop

Durability

(measured at 20 rpm)

Durability Test Conditions

- Damper Mounting Posture: Shaft Upwards
- Rotating Speed: 50 rpm
- Durability Operation: Continuous Single Directional Rotation
- Current: 0.065 A (12 V)

Reference Table for the Selection of a Rotary Damper/Vane Damper/Customizable Torque Chart for Rotary Dampers

Reference Table for the Selection of a Rotary Damper/Vane Damper

※Lid's mass M.....1.4kg Dimensions of the lid L.....36cm Selected model : FYN-N1

L (Dimensions of the lid) (cm)

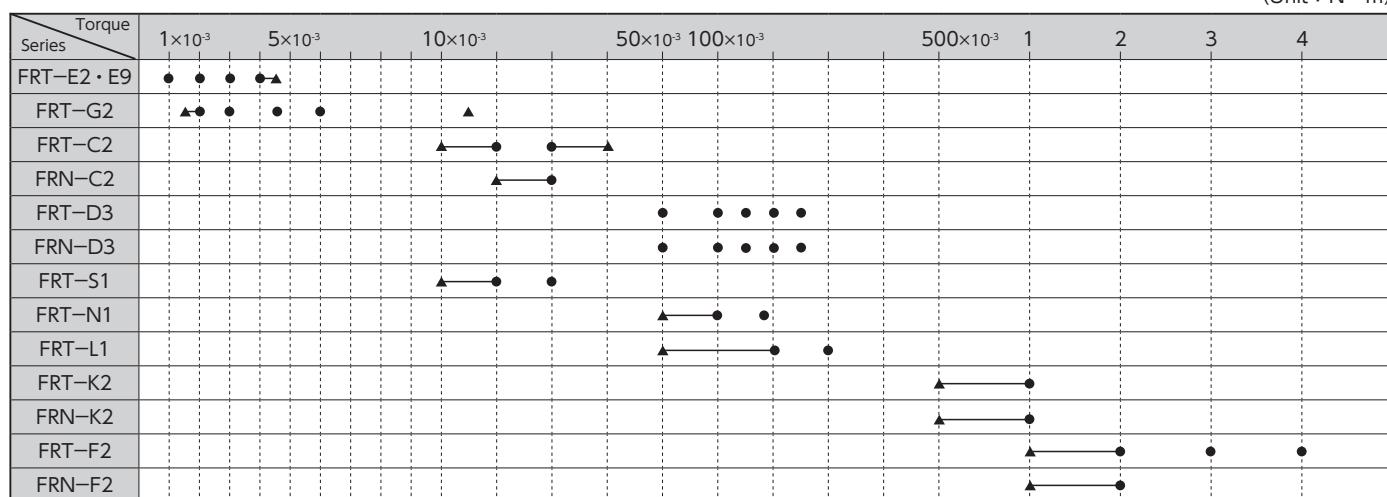
Y-axis: M (Mass) (kg)

X-axis: H (Height) (mm)

Legend (approximate ranges):

- FRT/N-D3 Series (Blue)
- FRT-L1 Series (Yellow)
- FRT/N-K2 Series (Orange)
- FYN-M1 (Light Orange)
- FRT/N-K2 Series (Green)
- FYN-B1 Series (Light Green)
- FRT/N-F2 Series (Light Blue)
- FYN-P1 Series (Medium Blue)
- FYN-N2 Series (Dark Blue)
- FYN-U1 Series (Lightest Blue)
- FRT/N-F2 Series (Light Blue)
- FYN-N2 Series (Medium Blue)
- FYN-U1 Series (Dark Blue)
- FYN-C1 Series (Lightest Blue)
- FYN-D3 Series (Blue)
- FYT/N-D1 Series (Yellow)
- FYT/N-H1 Series (Orange)
- FYN-S1 Series (Light Green)
- FYN-C1 Series (Light Green)
- FYN-A2 (Light Blue)
- FYN-X2-L/R154 Series (Medium Blue)
- FYT/N-LA3 Series (Dark Blue)
- FYN-A2 (Light Blue)
- FYN-X2-L/R254 Series (Medium Blue)
- FYT/N-LA3 Series (Dark Blue)
- FYN-X2-L/R254 Series (Light Blue)
- FYT/N-LA3 Series (Medium Blue)
- FYN-X2-L/R254 Series (Dark Blue)
- FYT/N-LA3 Series (Light Blue)
- FYN-Z2-L/R354 Series (Light Blue)
- FYT/N-LA3 Series (Medium Blue)
- FYT/N-LA3 Series (Dark Blue)
- FYT/N-LA3 Series (Light Blue)
- FRT-W1 Series (Light Blue)

Annotations:


- Red arrow pointing to the text "Examples of Selection".
- Red text "Examples of Selection" with a red circle around the first letter.

◆ How to use the table: Find the lid's mass (M) on the y-axis and the dimensions of the lid (L) on the x-axis.

- ◆ How to use the table: Find the lid's mass (W) on the y -axis and the dimensions of the lid (L) on the x -axis.
- ◆ This table should be used as a general guideline. The model selected based on this table is only a suggestion.

Customizable Torque Chart for Rotary Dampers

(Unit : N · m)

Note) ● indicates standard torque ▲ stands for a made to order torque range. Be sure to confirm before selecting.

3

Magnum Series

A worry free hydraulic shock absorber for heavy duty applications

Please be sure to read before using.

This owner's manual lists the various precautions for safe and proper use of the product and for prevention of safety hazards to the operators and damage to the plant/machines. Please thoroughly read before using the product.

⚠ Warning

Definition of Warning

"Warning" applies to situations in which death or serious injuries may occur to the user, etc. if the potential dangers of the products are not avoided.

The use under a condition outside the specification is prohibited

- Any use outside the catalog specification will damage the soft absorber and will cause an abnormal condition (bottoming, defective return, etc.) and lead to damage to mother machine.
- If the use outside the catalog specification is planned, please consult our sales department.

Contacting the soft absorber while in operation of the mother machine is prohibited

- A contact with a soft absorber while operating may cause an injury.
- The adjustment of the soft absorber shall be conducted after confirming the shutdown of the mother machine.

Working without wearing safety clothes and safety equipment is prohibited

- The work related with soft absorber is a hazardous work.
- Please abide by Section 1 General Standard in the Ordinance on Industrial Safety and Health Part II, Chapter I

Operation before the installation of external tank and pipework is prohibited

(for air/oil return types)

- The use before installation of external tank and pipework will cause damage and pose a serious hazard to the workers.
- Please operate after installation of external tank and pipework.

Installation of external tank at a lower level than soft absorber is prohibited

(for air return/air & spring combination return types)

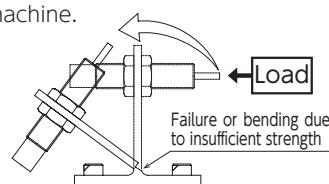
- If an external tank is installed at a lower level than soft absorber, the drained oil will disable the soft absorber and the mother machine will be damaged.
- Please install the external tank at a higher level than the soft absorber.

Touching a soft absorber while hot is prohibited

- The soft absorber is hot after operation. Risk of burning by touching.
- Be sure to start working after returning to the ordinary temperature.

Throwing into an open flame is prohibited

- Be sure to start working after returning to the ordinary temperature.
- Do not throw into an open flame


⚠ Caution

Definition of Caution

"Caution" applies to situations in which minor injuries or property damage may result if the operation or maintenance procedures are not strictly followed.

Operation under insufficient strength of installation is prohibited

- An operation under an insufficient strength of installation may pose a risk of damaging mother machine and injury.
- Please secure the strength of mounting component equivalent to (loading torque) x (safety factor).

Operation of the soft absorber on a mounting component that does not have the sufficient strength is prohibited

- An operation with insufficient strength of the mounting component will damage the mother machine.
- Please give a higher strength than designated strength for a mounting component.

(strength of mounting component) = (max. drag x safety factor)

$$(max. drag) = \frac{\text{max. absorption energy (J)}}{\text{stroke (m)} \times 0.3}$$

Mounting with other than tightening torque for the mounting nut is prohibited

- The mounting with other than tightening torque may cause a malfunction or damage to the mother machine.
- Please tighten the mounting nut with a tightening torque below.

The nut may become loose depending on the conditions of mating material. Please use an adhesive together as necessary.

Thread outside diameter (mm)	M33×1.5	M36×1.5	M45×1.5	M64×2.0
Nut tightening torque (N·m)	81	81	250	830

Be sure to conduct an adjustment of an adjusting type soft absorber

- Be sure to conduct an adjustment of an adjusting type product for using in the most appropriate position. If the adjustment is improper, the product may be damaged even within the range of the specification.

Operation under oil leakage is prohibited.

- The operation under a condition of oil leakage from pipework or main unit will disable the soft absorber and damage the mother machine.
- An operation shall be started after checking for any leakage of oil from fastened joints, etc.

Oil

- Seals, etc. are used for prevention of leakage of oil used in an absorber to outside, but a perfect sealing performance cannot be expected. Accordingly, it cannot be used in an environment that dislikes oil.

Model Selection

- Please check all the contents of the specification in the newest product catalog for selecting a model.
- The energy absorbing capacity will be degraded with the increased cycles of use, reduced internal oil quantity, or worn parts. In consideration of this, it is recommended to make a selection with a margin of 20–40% to the maximum absorption energy.
- Please avoid parallel use of adjustable soft absorbers because the synchronization of absorption property is difficult. For a parallel application, please use a preset type soft absorber.

Pay attention to scattering of broken pieces of the cap

- Any use outside the specification may cause breakage of the cap and injury by scattering
- Please install a scattering prevention cover, or keep away from operating area and stay in the position where safety is secured.

Main unit of the product

- Please be careful not to scratch or contaminate with lubricating oil on the piston rod. Degraded durability or defective return will be caused.
- Please be careful not to scratch the spring for an external spring type. Breakage of the spring will be caused.
- Please do not turn the screw for the oil supply port on the bottom of the soft absorber. Malfunction, oil scattering due to oil leakage will be caused.

Eccentric Load/Inclination Angle

- If a load is collided with an inclination angle exceeding $\pm 2.0^\circ$, the defective returning due to the bent piston rod or degraded performance due to local friction of sliding zone will be caused and as a result the mother machine will be damaged.
- Please align the piston rod in such a way that the collision occurs in the centerline. If the inclination angle exceeds $\pm 2.0^\circ$, please use an inclination angle adapter together. It can cope with an angle as large as $\pm 25^\circ$.

Usable circumstances

- Please use within the specified temperature range for use. Any use outside the range will lead to a shortened lifetime. Please use within $-12^\circ\text{C} - +66^\circ\text{C}$. *Please avoid a high temperature/humidity for storage.
- Please use in the environment under atmospheric pressure. Any use in vacuum or high pressure will cause oil leakage or damage.
- Any use in a place where ozone is generated will cause a shortened lifetime.
- Please do not use in an environment where cutting chips, cutting oil, water, etc., contacts the piston rod. The damage to the packing will cause a malfunction or damage to mother machine due to oil leakage.

Daily Inspection/Maintenance

- The performance/functions of the product will be degraded with the lifetime. Carry out daily inspections and check the satisfaction of necessary functions and prevent the occurrence of an accident.
- Please check for loosening of the fastening nuts. Any use with a loose condition will cause damage or accidents.
- Please pay attention to abnormal vibration noises and vibration. When the crashing noise or vibration is abnormally high, please replace because the product may have reached the lifetime limit. Any continued use under this condition will cause damage to machine in which the product is implemented.
- Please check for any oil leakage and the returning status of the piston rod. If a large quantity of oil leakage or defective returning of the piston rod is observed, please replace because there might be some abnormality. Any continued use under this condition will cause damage to machine in which the product is implemented.
- The maintenance of the soft absorber such as disassembly, re-assembly, and oil supply are not available from the structural reason. Ignorance of owner's manual while carrying out daily maintenance/inspection is prohibited.

Don't maintain or inspect without reading the operation manual

- Ignorance of owner's manual while carrying out daily maintenance/inspection is dangerous. Be sure to read the owner's manual and understand before carrying out a maintenance/inspection.
- Please carefully keep the owner's manual so that it is available at any time.

Discarding

- When a soft absorber is no more necessary, please follow a proper disposal procedure in accordance with the local ordinance, rules, etc. as an industrial waste.

Fuji Latex Co., Ltd. assumes no responsibility for any secondary disasters caused by a soft absorber. Please enforce a preventive measure against any secondary disasters.

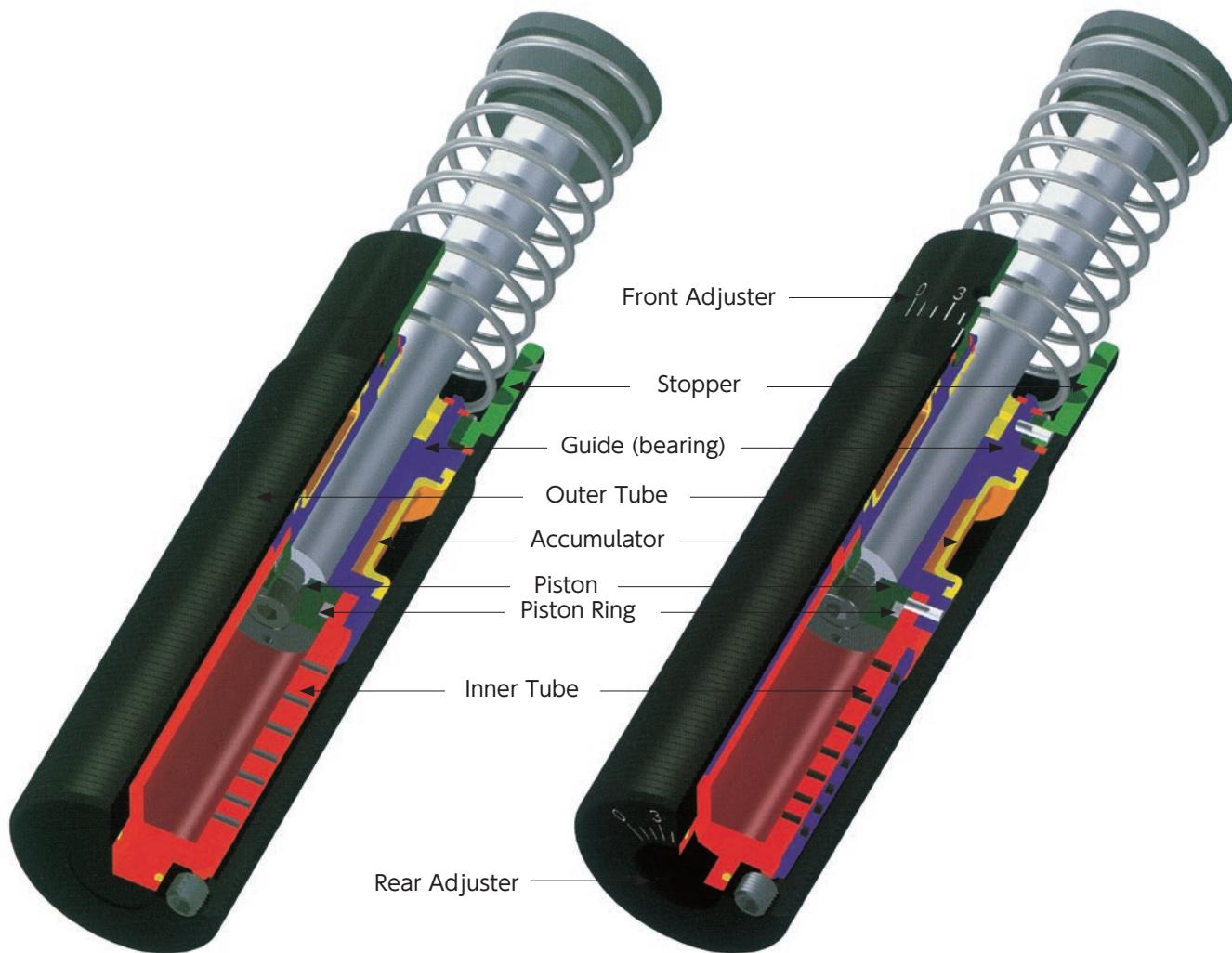
Structure/Outlines

FMC/FMA Magnum Series

Magnum Series is the newest model of industrial soft absorber implemented with the innovative next generation deceleration technology for self-correction/adjusting type. It consists of four types with external threads of M33, 36, 45, and 64.

The newest sealing technology, high precision bearing, and the design to allow the use of the main unit as a stopper are applied for the internal structure, which achieves high durability in an extreme usage environment.

The full thread type main unit makes a wide variety of mountings possible compared to conventional types.


From a performance viewpoint, this series has an increased absorption energy capacity by 50% compared with conventional products, and also has a wider equivalent mass range.

In addition the adjusting type FML model, developed as a low speed specification, provides a wide range of uses in a low speed impact.

As explained, the Magnum Series is a new series with the performance and appearance to improve the capability of production machines and equipment by 100%.

FMC33 ~64 (Self-correction type)

FMA & FML33 ~64 (Adjusting type)

<Model number>

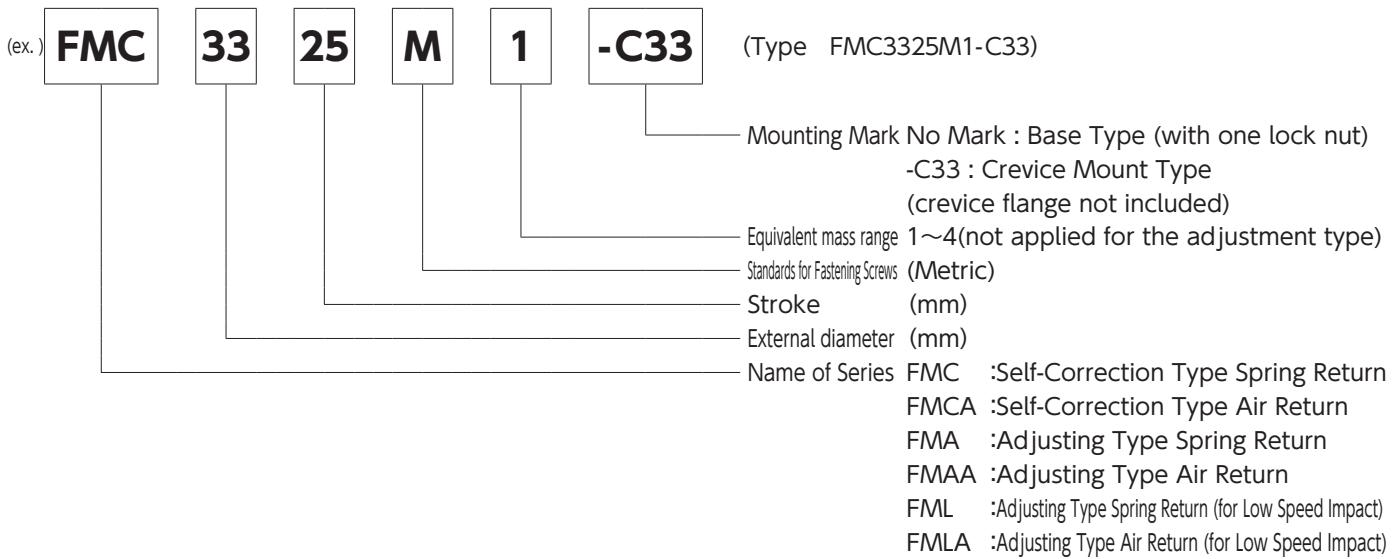
FMC - With External Returning Spring (Standard Type)

FMCA - Air Return Type (Without Returning Spring)

* When an external tank is used.

<Model number>

FMA/FML - With External Returning Spring (Standard Type)


FMAA/FMLA - Air Return Type (Without Returning Spring)

* When an external tank is used.

Outlines

	Self-correction type	Adjusting type	
	FMC·FMCA	FMA·FMAA	FML·FMLA
Range of impact rate	0.15~5m/s	0.15~5m/s	0.02~0.46m/s
Adjustment method	Unnecessary		Adjustable at the front stopper or bottom. (Direction to "0" for harder, Direction to "9" for softer)
Oil type	Automatic Transmission Fluid (ATF)		
Range of operating temperature	-12°C~66°C		

Key to Model Number

(*) If the mounting parts such as flanges are required, please order together with the models above.

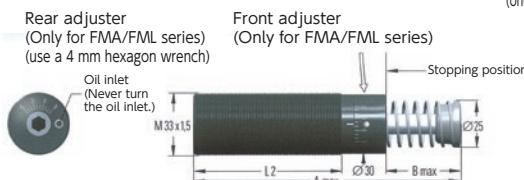
(ex.) QF33 : Square flange

S33 : Side mount fixture

Caution

- For appropriate heat radiation, do not apply a coating on the soft absorber.
If used in an acid, dirt, dust, steam, or water environment, please protect the soft absorber main unit.
Install the soft absorber on a smooth structure with proper strength.
- If a square flange/rectangular flange is used:
Be sure to mount the flange in front of the structure and avoid direct loading on the mounting bolts.
- If side mount fixture is used:
Be sure to support the side mount with a stopper to avoid direct shearing force on the mounting bolts.

Magnum Series


Self-Correction Type FMC33/Adjustable Type FMA/FML33 Series

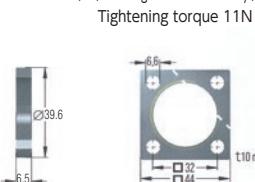
RoHS Compliant

●Products specification might be changed without notice.

FMC/FMA/FML33 Series


Base Type

S 33


Side mount fixture (2 fixtures + 6 screws × 40, 4 pieces)

Tightening torque 11Nm

NM 33

Lock nut (one piece for the main unit)

QF 33

Square flange (A locking nut is unnecessary.)

Tightening torque 11N

< FMA33 Series Adjustable Type >

Model

FMA3325M (Spring Turn)

FMA3350M (Spring Turn)

< FML33 Series Low Speed Adjustable Type >

Model

FML3325M (Spring Turn)

FML3350M (Spring Turn)

< FMC33 Series Self-Correction Type >

Model

FMC3325M (Spring Turn)

FMC3350M (Spring Turn)

< Option >

Model

Lock Nut NM33

Square Flange QF33

Side Mount Kit S33

Rectangular Flange RFL1200

Clevis Mount Kit C33

Clevis Flange SF33

Inclination Angle adapter BV3325

FMC/FMA/FML33 Series

Crevice Mount Type

(The crevice flange SF33 is not included.)

Example model: FMC3325M1-C33

SF 33

Crevice flange

(1 flange + 6 screws × 20, 4 pieces)

Tightening torque 7.5Nm

BV 3325

(for 25 stroke)

Eccentric angle adaptor

Dimensions (mm)

Model	Stroke	A max	B max	L1 min	L1 max	L2	L3	L5 max	L6 max
FMA, FML, FMC 3325M	25	138	23	25	60	83	68	39	168
FMA, FML, FMC 3350M	50	189.0	48.5	32	86	108.0	93	64	218

Specifications

Model	Absorption energy per time J	Max. absorption energy per hour J			* Equivalent mass kg				Piston rod		Max. allowable	
		Standard	External Tank	Oil circulator	Soft	1 min-max	2 min-max	3 min-max	4 min-max			
FMC3325M	155	75,000	124,000	169,000	9-40	30-120	100-420	350-1,420	45-90	0.03	4	0.45
FMC3350M	310	85,000	135,000	180,000	18-70	60-250	210-840	710-2,830	45-135	0.06	3	0.54

Model	Absorption energy per time J	Max. absorption energy per hour J			* Equivalent mass kg		Piston rod		Max. allowable	
		Standard	External Tank	Oil circulator	FMA series	FML series				
FMA, FML3325M	170	75,000	124,000	169,000	9-1,700	300-50,000	45-90	0.03	4	0.45
FMA, FML3350M	340	85,000	135,000	180,000	13-2,500	500-80,000	45-135	0.06	3	0.54

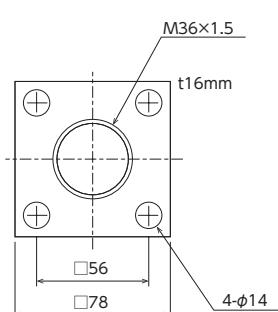
Magnum Series

Self-Correction Type FMC36/Adjustable Type FMA/FML36 Series

RoHS Compliant

●Products specification might be changed without notice.

Rear adjuster
(Only for FMA/FML series)
(use a 4 mm hexagon wrench)


Front adjuster
(Only for FMA/FML series)

NM 36
Lock nut
(one piece for the main unit)

OP-040UB
Square flange

< FMA36 Series Adjustable Type >

Model

FMA3625M (Spring Turn)

FMA3650M (Spring Turn)

< FML36 Series Low Speed Adjustable Type >

Model

FML3625M (Spring Turn)

FML3650M (Spring Turn)

< FMC36 Series Self-Compensation Type > * will be filled in with 1-4.

Model

FMC3625M (Spring Turn)

FMC3650M (Spring Turn)

< Option >

Model

Lock Nut NM36

Square Flange OP-040UB

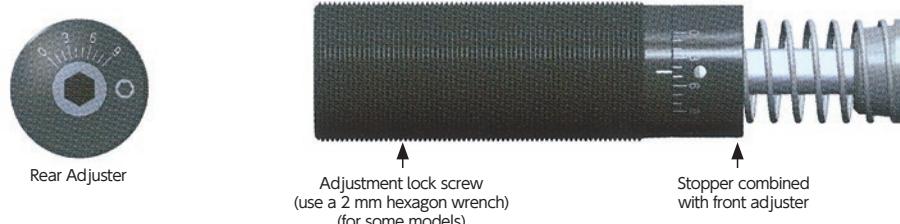
Dimensions (mm)

Model	Stroke	A max	B max	L2
FMA, FML, FMC 3625M	25	138	23	83
FMA, FML, FMC 3650M	50	189.0	48.5	108.0

Specifications

Model	Absorption energy per time J	Max. absorption energy per hour J			* Equivalent mass kg				Piston rod		Max. allowable	
					Soft		Hard					
		Standard	External Tank	Oil circulator	1 min-max	2 min-max	3 min-max	4 min-max	recovering power N min-max	Returning time s	Eccentric angle °	Mass kg
FMC3625M	155	75,000	124,000	169,000	9-40	30-120	100-420	350-1,420	45-90	0.03	4	0.56
FMC3650M	310	85,000	135,000	180,000	18-70	60-250	210-840	710-2,830	45-135	0.06	3	0.68

Model	Absorption energy per time J	Max. absorption energy per hour J			* Equivalent mass kg		Piston rod		Max. allowable	
					FMA series					
		Standard	External Tank	Oil circulator	min-max	min-max	recovering power N min-max	Returning time s	Eccentric angle °	Mass kg
FMA, FML3625M	170	75,000	124,000	169,000	9-1,700	300-50,000	45-90	0.03	4	0.56
FMA, FML3650M	340	85,000	135,000	180,000	13-2,500	500-80,000	45-135	0.06	3	0.68



Cautions on Mounting Methods/Mounting Work

No external stopper required

Magnum Series has a stopper integrated into the Soft Absorber.

Setting of a most appropriate absorption energy condition.

Self-Correction Type Absorber

FMC model is a Self-Soft Absorber.

Can be used under the varying conditions of weight of impact load/impact rate/thrusting force as long as the condition of use is within the equivalent mass range.

The products for this model are prepared for handling the equivalent mass range (min. - max.) of five stages.

Select the model by the attached tail Nos. -0 (soft) - 4 (hard) of the type in accordance with the condition of use.

The best deceleration performance will be achieved under conditions with no sudden change in the speed of load at the top or end of the absorber piston rod.

If there is an impact at the start of stroke - change to one stage softer model (with smaller tail No.)

If there is an impact at the stroke end - change to one stage harder model (with larger tail No.)

or change to the use of two in parallel.

Adjusting Type Absorber

There is an adjusting scale of 0 ~9 on the FMA/FML models adjustment type soft absorber.

Before starting adjustment, loosen (maximum 1/2 turns) the locking screw (excluding 150mm stroke, FMA/FML 64 series only) located at the side of main unit using a hexagon wrench (2mm).

The Magnum Series is adjustable with the rear adjuster on the bottom of main unit, or the front adjuster (front stopper).

Both of the adjusters are internally linked together, and the adjusted scale of one side will be synchronous with the other scale.

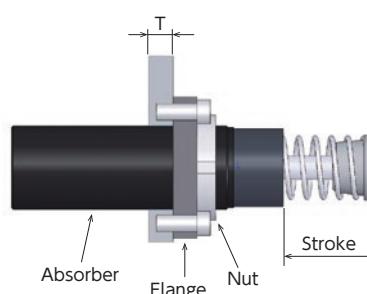
After mounting, check the functioning several times, and turn the adjuster to a scale which provides the best deceleration. (At the start of stroke and stroke end of the piston rod, confirm that there is no impact.)

The soft absorbers are delivered with the adjusting scale positioned at 5.

If there is an impact at the start of stroke, turn the adjusting scale to 9 (soften) .

If there is an impact at the stroke end, turn the adjusting scale to 0 (harden).

* If the adjusting scale indicates 0 or 9, consider changing to another model.


If the adjusting scale indicates 0: A) Due to the very slow impact rate, change to FML model.

or

B) Too small size of absorber, please study the adoption of an absorber that is one stage larger.

Thickness of mounting base/Mounting strength/Tightening torque for the lock nut (recommendation)

Model (External thread)	Thickness T (minimum)	Mounting strength	Tightening torque for the lock nut
FMA, FML, FMC33/36 (M33/36x1.5)	10mm	1,150kg	15~30kgf·m
FMA, FML, FMC45 (M45x1.5)	13mm	1,800kg	30~60kgf·m
FMA, FML, FMC64 (M64x2)	16mm	5,100kg	50~100kgf·m

* Reinforce the thickness T applying a rib etc. as necessary.

Measures for Eccentric Load

The impact of eccentric load over 3° will speed up the wear of the piston rod bearing and rapidly reduce the life cycle of the soft absorber. For maintaining the durability, the use of an eccentric angle adaptor is recommended.

Solutions:

The use of an eccentric angle adaptor is recommended. If possible, dividing the center of stroke to set the impact angle to 1/2 is recommended, as shown below.

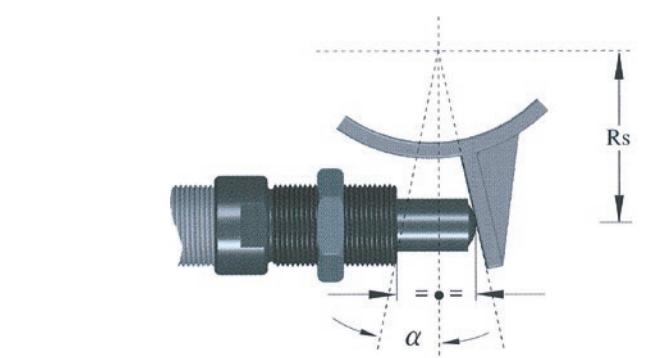
Equations:

$$\alpha = \tan^{-1} \left(\frac{s}{2 \cdot R_s} \right) \quad R_s \text{min} = \frac{s}{2 \cdot \tan \alpha \text{ max}}$$

Sample Calculations:

$$s = 0.025 \text{m} \quad \alpha \text{ max} = 25^\circ$$

$$R_s = 0.1 \text{m}$$


$$\alpha = \tan^{-1} \left(\frac{0.025}{2 \cdot 0.1} \right) \quad R_s \text{min} = \frac{0.025}{2 \cdot \tan 25}$$

$$\alpha = 7.13^\circ \quad R_s \text{min} = 0.027 \text{m}$$

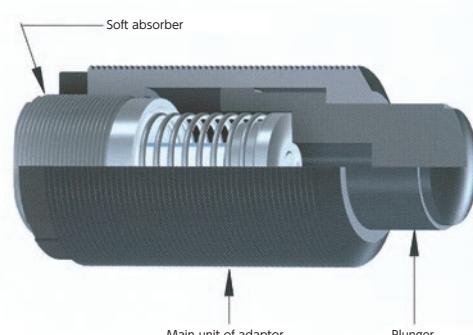
α = Eccentric angle: °

α max = Maximum Allowable Eccentric Angle: °

s = Absorber Stroke: m

R_s = Mounting Distance (radius): m

$R_s \text{min}$ = Shortest Possible Mounting Distance (radius): m


Eccentric Angle Adaptor:

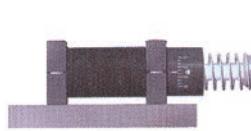
The durability will be improved by taking a measure for eccentric angle of 3°~ 25° using a BV eccentric angle adaptor.

When using the eccentric angle adaptor, screw in the absorber until the end cap of the absorber contacts the plunger.

Be sure to lock the nut for absorber main unit after mounting.

Be careful not to screw in the absorber too deep: the absorption performance may be influenced if the stroke is short.

Example of installation


Base type

Flange mount

Side mount

Crevice mount

* For side mountings, be sure to support with the stopper to avoid direct force to the mounting bolt.

MEMO

4

Speed Controller

Differently from shock absorber that absorbs a shock, a hydraulic type speed controller manufactured for the purpose of speed control

Read these instructions before use

This owner's manual contains various safety precautions regarding the proper handling of this product, and preventing danger to the operator, as well as damage to the plant and the machine. Please read this manual thoroughly before using the product.

! Warning

Definition of "Warning"

"Warning" applies to situations in which death or serious injuries may occur to the user, etc. if the potential dangers of the products are not avoided.

A person who designs the equipment or determines the specification shall determine the compatibility of the speed controller.

- A person who designs the equipment or determines the specification shall determine the compatibility of the speed controller with the equipment after carrying out the performance verification and a life test because there are a variety of conditions for applications.

To enforce a safety measure when using for the following applications

- Any use outside the specification range will cause a malfunction or damage to product.

To enforce a safety measure when using for the following applications

- Please enforce a safety measure when using in the conditions and environments listed below, and consult our company for determining the adequacy of use.

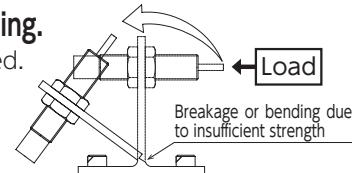
1) The use in such places as an environment outside the standard specification not clarified in the catalogs or owner's manuals, outdoors or direct sunlight

2) The use for those devices and applications such as nuclear power equipment, the devices directly or indirectly related with the services of railroad, boats and ships and the running of vehicles, aerospace devices, military devices, medical devices, devices contacting with the beverages and foods, combustion equipment, amusement devices influencing human or property, emergency shut down circuits, press devices, etc., a serious influence on humans or property is anticipated and special safety is requested.

Do not throw into a fire

- As the products contain oil, throwing them into a fire may cause them to explode/ignite, resulting in injuries.

! Caution


Definition of "Caution"

"Caution" applies to situations in which minor injuries or property damage may result if the operation or maintenance procedures are not strictly followed.

It is prohibited to operate the speed controller with insufficient strength of mounting.

- If operated with insufficient strength of the mounting, the mother unit may be damaged.
- Apply a mounting strength which is more than that specified.

(Strength of Mounting) = (Maximum Thrust x Safety Factor)

Do not attach using incorrect tightening torque

- Mounting with a torque other than the tightening torque may cause malfunction/damage of mother unit.
- Please tighten the mounting screw with a tightening torque below. The nut may become loose depending on the conditions of mating material. Please use an adhesive together as necessary.

External diameter of the screw (mm)	M20 × 1.5	M25 × 1.5
Tightening torque for the nut (N · m)	29.4	49

Be sure to adjust the speed controller

- Be sure to adjust a speed controller for use in the most appropriate position. If the adjusted position is improper, the product may be damaged even within the range of the specification.

Oil

- Seals, etc., are used for prevention of leakage of oil used in the speed controller to outside, but perfect sealing performance cannot be expected. Accordingly, it cannot be used in an environment that dislikes oil.

Model Selection

- Please check all the contents of the specification in the newest product catalog when selecting a model.

Pay attention to the scattered broken pieces of the cap

- Any use outside the specification may cause the breakage of the cap and injury by scattering
- Please install a scattering prevention cover, or keep away from operating area and stay in the position where safety is secured.

Pay attention to a loose retaining ring

- Any use outside the specification may bring about an abnormally increased internal pressure of the speed controller and cause a jump out of implemented parts by a disengaged retaining ring.

Accordingly, as well as using within specification, please step away from the product to a distant position where safety is secured during operation

Product Main Unit

- Please carefully handle the piston rod and do not scratch or stain with lubricating oil. Degraded durability or imperfect return will be caused.
- Please do not turn the screw for the oil supply port on the bottom of the soft absorber. Malfunction or scattering of oil will be caused due to oil leakage.
- Please never turn the piston rod of FVC Series that adopts the rolling seal type. Oil leakage will be caused.
- Please do not damage the rear adjusting knob while mounting, etc.

Environment for Use

- Please use within the temperature range for use. The use out of the range will lead to a shortened lifetime. Please use in an ambient temperature 0 °C - +60 °C.
- Please use under an atmospheric pressure environment. The use under vacuum or high pressure environment will cause oil leakage or damage.
- The use in a place where ozone is generated will cause a shortened lifetime.
- Please do not use in an environment where cutting chips, cutting oil, water, etc. contacts the piston rod. The damage on packing will cause a malfunctioning or damage to mother machine due to oil leakage.

Daily Inspection/Maintenance

- The performance/functions of the product will be degraded as will the service life. Carry out daily inspections and check the satisfaction of necessary functions and prevent the occurrence of an accident.
- Please check for no loosening of mounting nuts. The use under a loose condition will cause damage or accident.
- Please pay attention to abnormal vibration noises and vibration. When the crashing noise or vibration is abnormally high, please replace because the product may have reached the lifetime limit. A continued use under this condition will cause damage to machine in which the product is implemented.
- Please check for any oil leakage and the returning status of piston rod. If a large quantity of oil leakage or defective returning of piston rod is observed, please replace because there might be some abnormality. A continued use under this condition will cause damage to machine in which the product is implemented.
- The maintenance of the speed controller such as disassembly, re-assembly, oil supply are not available from the structural reason.

How to Adjust the Speed Controller

- The adjustment of the speed controller is available by turning the [adjusting knob] on the bottom of main unit. (FSC series: Please loosen the locking screw for turning the adjusting knob.) The display of adjusting scale differs model to model.

FVC series	0 (weak) - 20 (strong) / adjustment in the range of 270°
AE series	00 (weak) - 9 (strong) / adjustment in the range of 270°

- Be sure to tighten the locking screw when the adjustment is complete. The use without locking will allow the rotation of adjusting knob and a property variation will occur.

Some models are not equipped with a locking screw mechanism. The adjusting knob will not rotate while in an ordinary use if a model is not equipped with a locking screw mechanism (FVC series), but the adjusting knob may be rotated if it is used in a place where vibration is generated.

Please confirm with a real device and determine if it can be used or not.

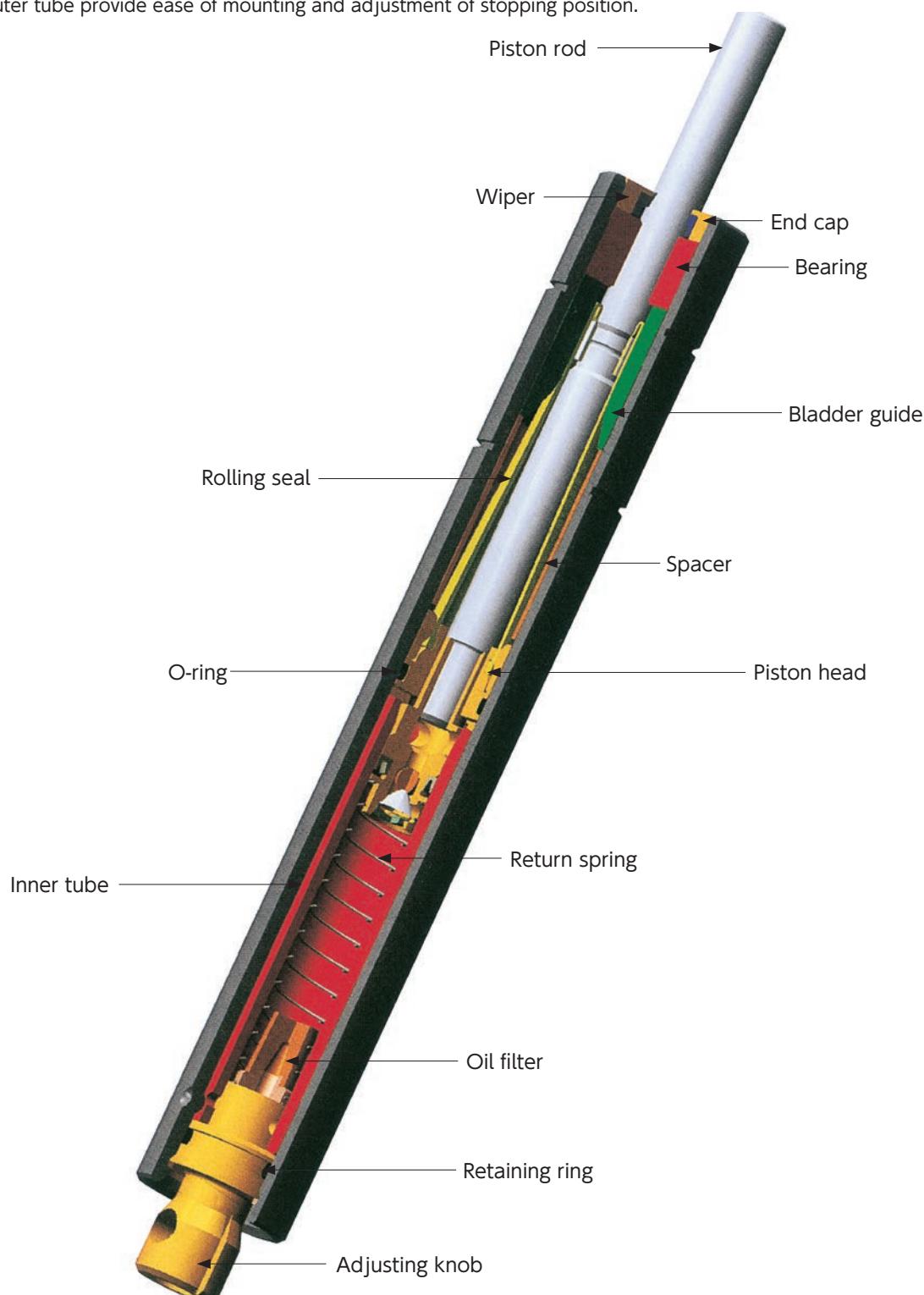
Disposal

- When a speed controller is no more necessary, please follow a proper disposal procedure in accordance with the local ordinance, rules, etc. as an industrial waste.

Selection of the speed controller

- Please refer to the item "Speed Controller" in the catalog for selection of a speed controller.

Fuji Latex Co., Ltd. will not take any responsibility for the secondary disasters caused by the speed controller.


The user should implement preventative measures against such secondary accidents.

Structure/Outlines

FVC Series

RoHS Compliant

FVC provides the precise speed adjustment, making use of high precision flow controlling mechanism. The hydraulic oil squeezed out when the piston rod is compressed will go through the high precision adjustable orifice to allow constant and precise speed control. The wide range of adjustment of controlled speed is available by turning the adjusting knob at the backside. The added screws on the outer tube provide ease of mounting and adjustment of stopping position.

This series will precisely control the machine motion. In addition, it is maintenance free, has no oil leakage, has no stick slip, and is not influenced by a change in temperature. In addition, FVC2515 ~ 2555 seals the piston rod and absorbs the volume variation of the piston rod with the adoption of Bellofram Seal. The high precision flow control valve has made it possible to precisely control the speed from 13mm/min under small thrusting force. This series can be used in the fields of plastics, metal, wood, glass, etc. for the feeding of cutting, turning, drilling, grinding, and boring works.

Speed Controller

FVC Series

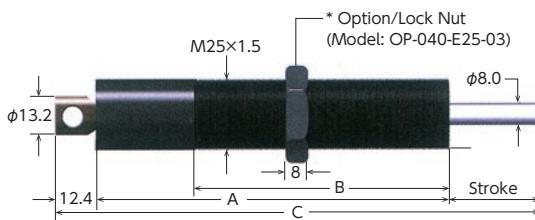
RoHS Compliant

New products

1 Soft Absorber

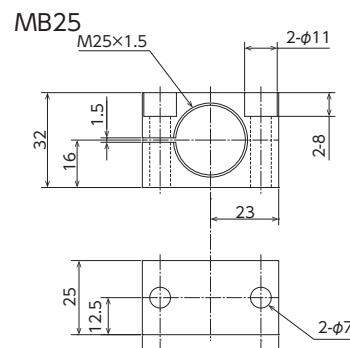
2 Rotary Damper

3 Magnum Series


4 Speed Controller

5 Helical Isolator

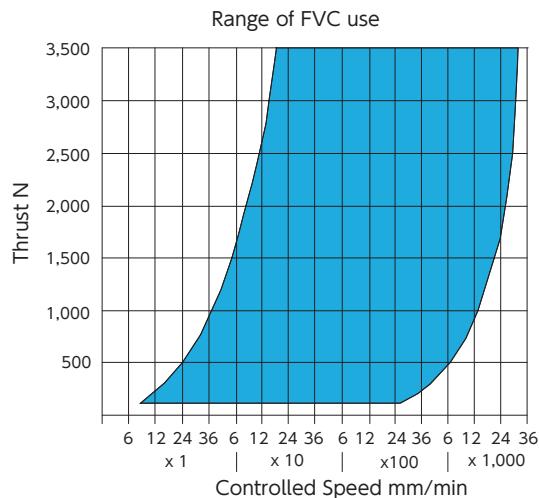
6 Model Selection Form


● Products specification might be changed without notice.

FVC Series

* The main unit does not come with nuts.

Model
MB25



Dimensions/Specifications

Model	Stroke mm	A mm	B mm	C mm	Thrust N Minimum - Maximum	Recovering power N Minimum - Maximum	Returning time S	Allowable eccentric angle °	Weight kg
FVC2515-FT	15	128	80	156	30-3,500	5-10	0.2	3	0.4
FVC2530-FT	30	161	110	204	30-3,500	5-15	0.4	2	0.5
FVC2555-FT	55	209	130	277	35-3,500	5-20	1.2	2	0.6
FVC2575-FT	75	283	150	371	50-3,500	33-51	1.7	2	0.8
FVC25100-FT	100	308	150	421	60-3,500	27-51	2.3	1	0.9
FVC25125-FT	125	333.5	150	471.5	70-3,500	23-50	2.8	1	1.0

Range of FVC use

FVC2575 to 25125 cannot be used in an environment of spattering liquid, such as cutting oil, water, or cleansing liquid, etc. Use in place of the AE Series for applications where higher precision is needed.

Characteristics

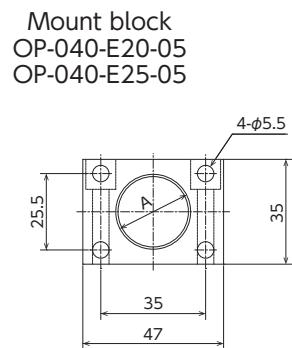
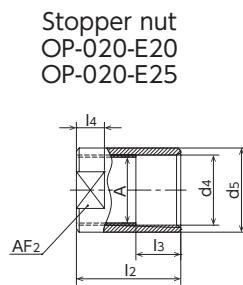
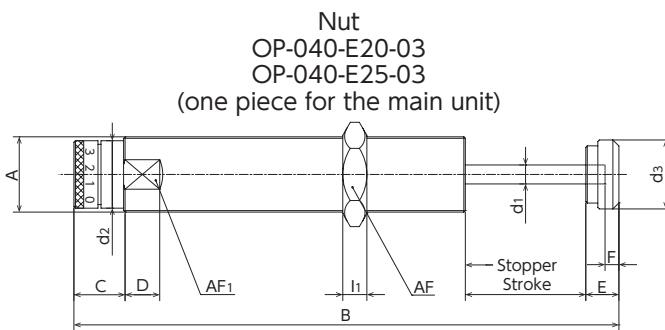
Range of Speed Control : Minimum 0.013m/min
at Thrusting Force 400N
Maximum 38.1m/min
at Thrusting Force 3500N

Do not rotate the piston rod of FVC2515 ~ 2555
The Bellofram Seal will be broken.
Do not damage the adjusting knob at mounting, etc.
Operating temperature : 0 ~ 60°C

Surface treatment :

Outer tube Black oxide coating
Piston rod Hard chromium plated

Example of
installation




Mounting using Mount Block MB25

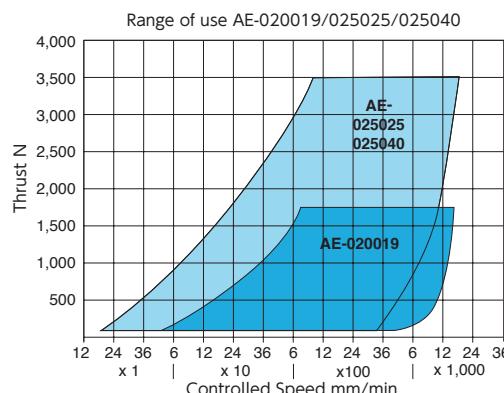
Speed Controller

AE Series

RoHS Compliant

●Products specification might be changed without notice.

Dimensions


Model	Stroke mm	A	B	C	D	E	F	d ₁	d ₂	d ₃	d ₄	d ₅	l ₁	l ₂	l ₃	l ₄	AF	AF ₁	AF ₂
AE-020019ASP	19.1	M20×1.5	118.6	13.2	12	11	4.6	4.8	16.8	16.8	20.5	25	6	25	12	8	24	18	22
AE-025025ASP	25.4	M25×1.5	142.6	16.5	12	11	4.6	6.3	22.4	22.9	25	30	8	32	16	10	30	23	27
AE-025040ASP	40.0	M25×1.5	189	16.5	12	11	4.6	6.3	22.4	22.9	25	30	8	32	16	10	30	23	27

Specifications

Model	Stroke mm	Thrust N Minimum - Maximum	Recovering power N Minimum - Maximum	Returning time S	Allowable eccentric angle °	Weight kg
AE-020019ASP	19.1	22–1779	4.69–9.56	0.65	2	0.13
AE-025025ASP	25.4	62–3559	10.67–30.56	0.85	2	0.30
AE-025040ASP	40	67–3559	10.67–32.92	0.95	2	0.39

Model	Remarks
OP-040-E20-05	020
OP-040-E25-05	025
OP-040-E20-03	020
OP-040-E25-03	025
OP-020-E20	020
OP-020-E25	025

Range of use/Range of Control

Characteristics

Operating temperature : 0 ~ 60°C

Material/Surface Treatment : Outer tube Carbon Steel/Black Oxide Coating

Piston rod Stainless steel

The product cannot be used in an environment where spattering liquid such as cutting oil, water, or cleansing liquid, etc. are present.

Speed Controller

FVC/AE Series

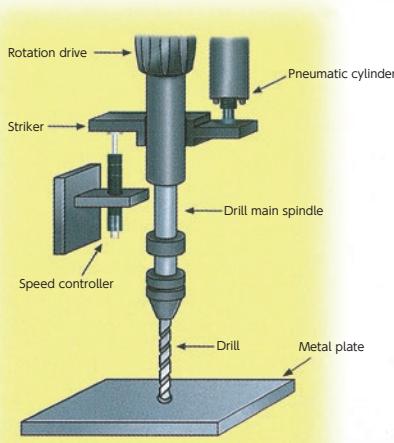
RoHS Compliant

New products

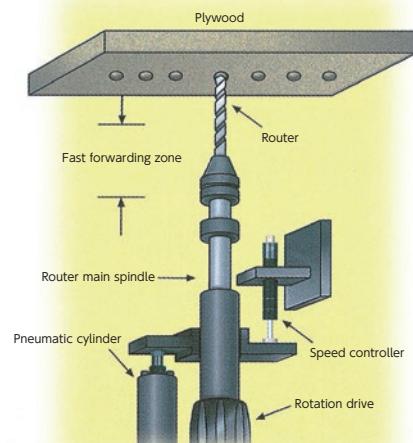
1 Soft Absorber

2 Rotary Damper

3 Magnum Series

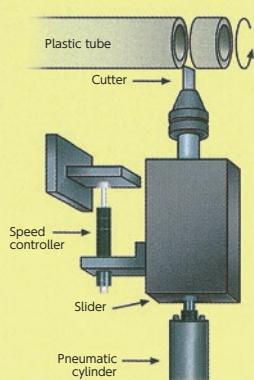

4 Speed Controller

5 Helical Isolator

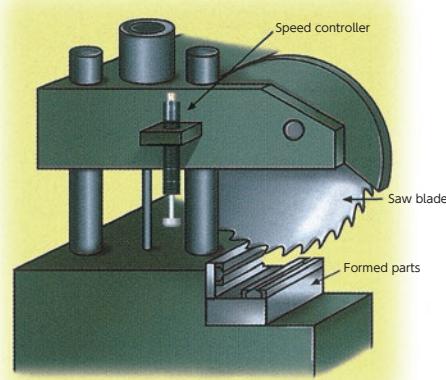

6 Model Selection Form

Application

Drilling the metal plate



Drilling of the panels for furniture.



If the control of feeding speed is not possible at drilling, the excessive force will be applied to the drill, and the drill will bite into the work to generate a sharp projection and break the drill. By mounting a speed controller, the feeding speed of the drill can be precisely controlled to reduce burrs and remarkably reduce the breakage of drill.

Cutting and Chamfering of Plastic tube

Cutting the Formed Parts of Aluminum/Plastics

Precisely adjusting the cutting and feeding speeds in accordance with the materials and works is required. The speed controller can easily control the different feeding speed in accordance with the materials. Due to this, a standard pneumatic cylinder can be applied for structuring an inexpensive system in accordance with the materials.

The saw blade will wear with the high cutting resistance of materials, such as aluminum and plastics. If the cutting is continued with this feeding speed, the saw blade or the material will be damaged. The attached speed controller on the tool head will provide the ease of feeding speed control to prevent the breakage, and the ease of mounting, which offers a low cost solution.

MEMO

5

Helical Isolators

A unique vibration absorber that absorbs vibration and shock utilizing the deflection and friction of a stainless wire. A vibration absorber that provides an effective vibration measure for transporting special vehicles, on board electronic devices on ships, arts, precision instrument.

Read these instructions before use

This owner's manual contains various safety precautions regarding the proper handling of this product, and preventing danger to the operator, as well as damage to the plant and the machine. Please read this manual thoroughly before using the product.

Warning

Definition of Warning

"Warning" applies to situations in which death or serious injuries may occur to the user, etc. if the potential dangers of the products are not avoided.

The decision on the suitability of helical vibration absorber shall be made by an engineer of the equipment or a person who determine the specification.

- Because of the wide variety of conditions of use, the decision on the suitability of helical vibration absorber shall be made by an engineer of the equipment or a person who determine the specification, after the performance verification and life test as necessity.

Do not use the helical vibration absorber outside the range of specification.

- The use outside the range of specification will cause the failure or breakage of the product.

Implementation of Safety Measures for the Purposes Below.

- Implement the safety measures if used under the following conditions and environment, and consult our company for a judgment on the feasibility check beforehand.
 - The use in the environment other than those standard specifications clearly indicated in the catalog or owner's manual, outdoors, or place exposed to the direct sunlight.
 - Nuclear related devices, devices directly or indirectly related to the running of rail or ship, devices related to aviation or space, military devices, medical devices, devices contacting the potions and foods, combustion equipment, amusement devices that are related to the influence on human and properties, emergency shut off circuit, press machinery, the use for the devices or purposes to which especially the safety is required because of the expected serious influence on the human and properties.

When installing a heavy object, follow these instructions:

- The installation process is extremely dangerous, as it may result in accidents causing injury or death as well as damage to the object being installed.
 - Install by lifting up the object with a hoist, etc.
 - Ensure that the object is well balanced and stable.
 - Make sure that the hoisting wire rope does not become undone or severed
 - Install by jacking up the object.
- As the helical vibration absorber will flex due to the installed object's weight, please accordingly select an appropriate jack. Please contact our company for further information on the product's flex.

Caution

Definition of Caution

"Caution" applies to situations in which minor injuries or property damage may result if the operation or maintenance procedures are not strictly followed.

Never disassemble the helical vibration absorber.

- You may not be able to reassemble it, or the mounting dimensions and characteristics may be altered.

Do not use the helical vibration absorber in the pulling direction.

- Compared to a compression direction, the spring is so rigid in a pulling direction that the selection graph in this catalog cannot be applied (please see Installation Method).

Do not use in a CR (Clean Room).

- Minute friction dust may contaminate the room.

Fuji Latex Co., Ltd. assumes no responsibility for any secondary disasters caused by a helical vibration absorber. Please enforce a preventive measure against any secondary disasters.

MEMO

- 1 Soft Absorber
- 2 Rotary Damper
- 3 Magnum Series
- 4 Speed Controller
- 5 Helical Isolator
- 6 Model Selection Form

Helical Vibration Absorber

FH•FHM Series

Structure and Principle

The stainless steel wire rope is bound on the retainer for mounting, and the wire rope is wound in a helical manner. This structure provides the significant deformation of wire rope in three axial directions to work as a spring. In addition, the element wires will rub each other during deformation to cause a phenomenon called hysteresis, which shows the different reaction forces at extension and shrinkage of helical vibration absorber due to this friction. This hysteresis phenomenon works as a damper.

Common Applications

Absorption of vibration and impact in electronic devices, computer hardware, and precision instruments such as optical equipment, machines, carrier devices, automobiles, ships, aircrafts, and containers.

Characteristics

1. Hybrid function of spring and damper:

It is a compact and simple device that functions as a spring and a damper.

2. A variety of installation options:

Because it can absorb vibration and impact in all three dimensions, it can be installed in four different ways, as shown below. Installation is easy and simple.

3. Wide range of use:

From a small load to a large load, helical isolators can be used in a wide range of conditions, as they are extremely resistant to corrosion and chemicals, and they can operate under a wide range of temperatures (-50 ~ +190°C).

FH Series are provided with All Stainless Steel Specification

4. Maintenance-free:

No maintenance is required.

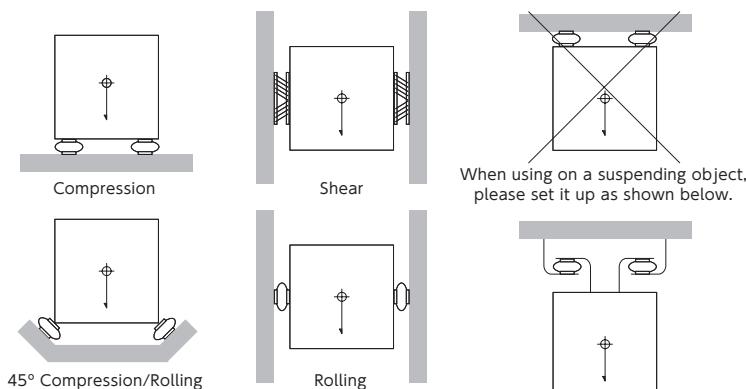
5. Delivery:

FH Series achieved the short delivery based on the domestic production.

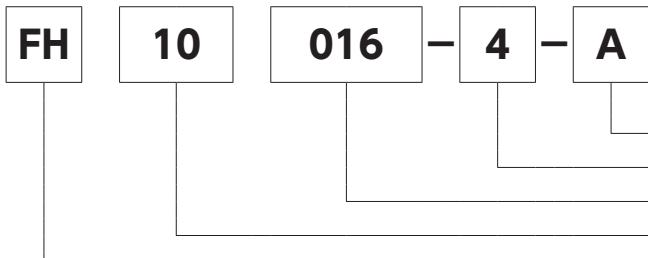
Material

Name	FH series	FHM series
Retainer	Stainless steel (SUS304)	Aluminum alloy (A6061-T6 with iridite coating)
Press fitting nut	Stainless steel (martensite passivation treated)	FHM08375~FHM08625: Stainless steel (SUS304 embedded nut) FHM08875: Directly threaded on the retainer
Wire rope		Stainless steel (SUS304)
Tube	Stainless steel (SUS304)	
Retaining bolt	—	FHM08375~FHM08875: Carbon Steel with chrome (III) chromate

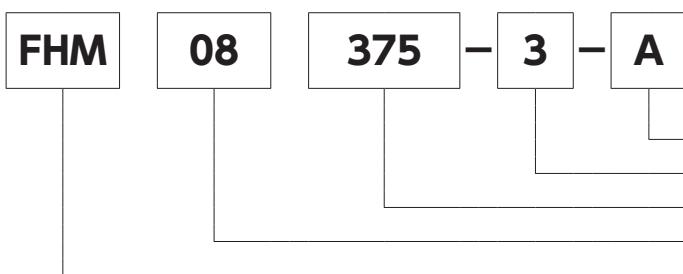
Note: Stainless steel and aluminum alloy are used, but it does not guarantee the rust prevention.


Installation Method

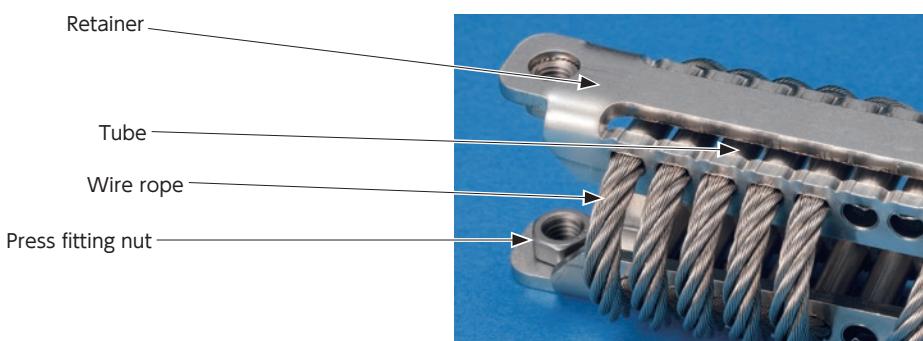
Helical vibration absorber cannot be used in the pulling direction. (Use for suspension)

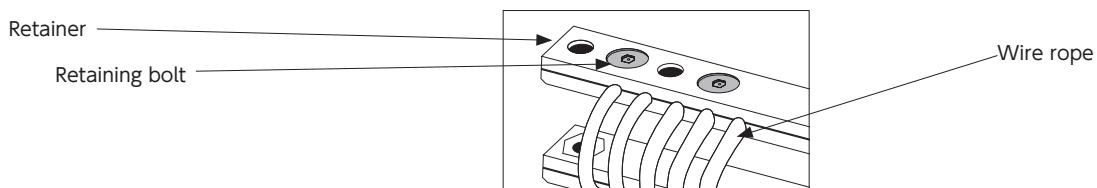

The position of the mounting hole of the retainer may be misaligned due to the deflection of wire during the installation of the helical vibration absorber.

Please contact our sales department with any questions regarding the mounting method.


Contact information: Fuji Latex Co., Ltd. Precision Device Business Division Phone: +81-282-30-1856 Fax: +81-282-30-1857

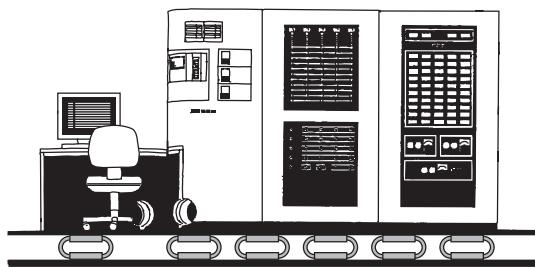
Type Indication Method


Please see Shape of Mounting Parts of each model.
 Performance classification
 Wire rope diameter ($\square\square\square \times 0.1 \doteq$ wire diameter in mm)
 Number of wire rope coils
 Helical vibration absorber FH series Stainless steel used for the whole/Domestic product

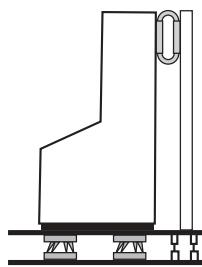

Please see Shape of Mounting Parts (on page 208).
 Performance classification
 Wire rope diameter ($\square\square\square \times 0.0254 \doteq$ wire diameter in mm)
 Number of wire rope coils
 Helical vibration absorber FHM series

Name of parts and their materials

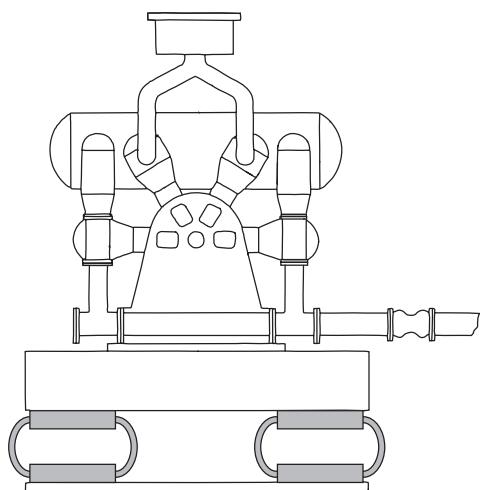
FH series



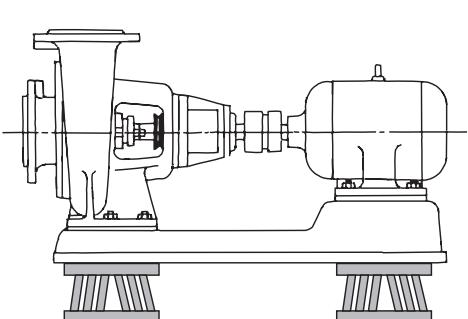
FHM series

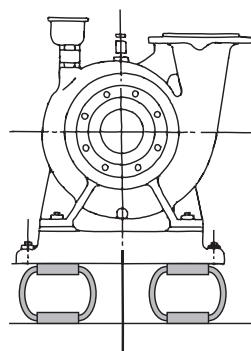


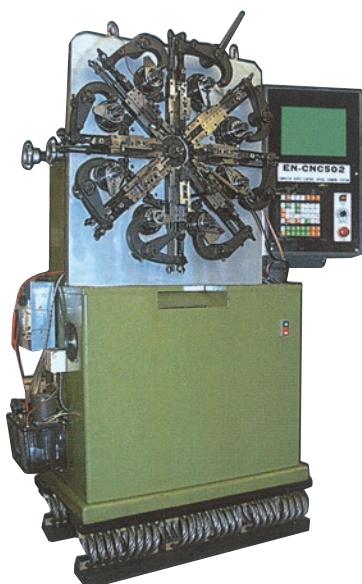
Applications


FH•FHM Series

Control panel


Vibration Absorption Wagons


Compressor


Vibration Absorption Wagons


Turbo Blowers

Marine Control Panels

Coil spring machine

Example of 45° compression/rolling installation

power generator

This example uses the vibration absorber as a stabilizer. For thin or high gravity center equipment, the combined use with vibration or impact absorber will effectively reduce the swaying motion.

Various control panels

This example uses a standard vibration absorber for absorbing vibration or impact.

Selection Method

FH•FHM Series

(Please refer to the next page for example selections.)

Verification of common specifications and calculation thereof

M: Mass of the installing object = kg

n: Number of vibration absorber = pce

(The number of vibration or impact absorbers, in which the number of anti-swaying stabilizers is not included.)

For the examples of anti-swaying stabilizer, please see page 205.)

m: Supporting mass per anti-vibration device = $\frac{M}{n}$ kg

The external dimensions of installed object : H (height)×W (width)×D (depth) = x x mm

Centre of gravity of the installed object :

(If the installing object sways sideways due to a high centre of gravity, etc, use a stabilizer that is the same model as the one selected below, or a model in the next performance classification number.)

Selection of Installation Method: Select from the figures in page 202.

Temperature Range for Use (can be used in the range of -50 ~+190°C) : ~ °C

If you need to use a helical isolator under other operating conditions, please consult our company's sales department.

Selection for Vibration Absorption

f: Machine's vibration frequency = Hz

N: Rotations per minute of motors and engines = rpm

$$f = \frac{N}{60} = \text{Hz}$$

fn: Natural Frequency of Helical Vibration Absorber = $\frac{f}{3}$ Hz

The intersection of calculated m and fn indicates the smallest model in the vibration selection graph. If an intersection cannot be found in the graph, select a model directly under the intersection. Next, select the shape of the mounting to finish the selection.

(The reason for selecting the model listed directly below the intersection is to improve the anti-vibration effect during regular operation by using a more flexible model.)

Caution : Operating a machine at its natural frequency is dangerous, as it increases vibration. Please make sure that natural frequency is passed as quickly as possible.

Selection for Impact Absorption

Ga : Allowable G value = G

V : Max. speed = m/s

1) Free fall $V = \sqrt{19.6 \times h}$ = m/s

h : Height of free fall = m

2) Halfsine acceleration input $V = \frac{19.6 \times G_{max} \times t}{\pi}$ = m/s

Gmax : Max. G value = G

t : Action time of halfsine acceleration input ($\frac{\text{Half Sin Period T}}{2}$) = s

X : Flex = $\frac{1000 \times V^2}{9.8 \times G_a}$ = mm

Ensure that flex X is smaller than the listed maximum flex for each model.

Fmax : Impact load per one vibration absorber = $N = m \times 9.8 \times G_a (+m \times g)$

* (+ m x g) is only for uses in the direction of compression

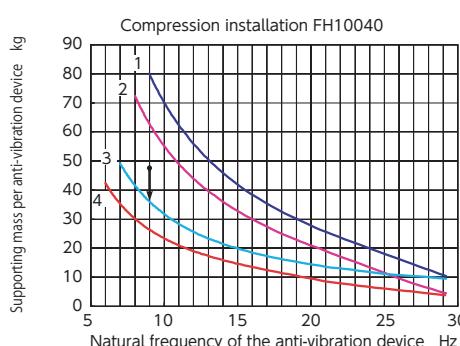
The intersection of calculated Fmax and X indicates the smallest model in the impact selection graph. If an intersection cannot be found in the graph, select a model directly under the intersection. Next, select the shape of the mounting to finish the selection.

(The reason for selecting the model listed directly below the intersection is to reduce the impact load by using a more flexible model.)

Example of a Vibration Absorption Selection

1. Specifications:

M : Mass of installed object = 180kg, n: Number of anti-vibration devices (Stabilizer is not required because of good stability due to the low center of gravity) = 4


m : Supporting mass per anti-vibration device = 45kg, Installation Method: compression, Ambient temperature: -5 ~ 40°C

f : Vibration frequency of machinery = 27Hz

2. Selection:

m : Supporting mass per = 45kg, fn : Natural frequency of anti-vibration device = $\frac{f}{3} = 9\text{Hz}$

Selected FH10040-3 using m, fn and the vibration selection graph. Next, the model description will be FH10040-3-D because the shape of mounting parts is D. Such a model description can be used for ordering.

Example of Impact Absorption Selection

1. Specifications:

Total Mass=60kg, n: Number of anti-vibration devices (Stabilizer is regarded not required because of good stability due to the low center of gravity).

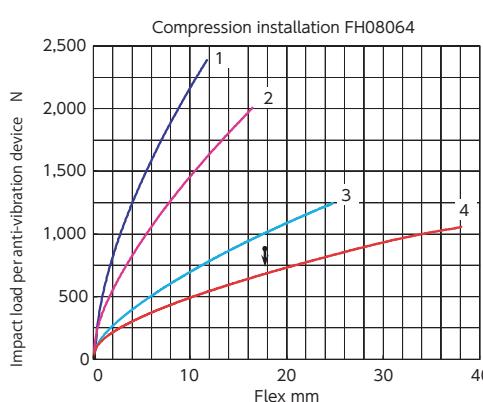
=4, m : Supporting mass per anti-vibration device = 15kg, Installation Method: compression, Ambient temperature: 0 ~ 60°C As halfsine input, Ga : Allowable G value = 5G, Gmax : Max. G value = 15G

t : Action time of halfsine acceleration input = 0.01 s

2. Selection:

m : Supporting mass per anti-vibration device = 15 kg

As it is input as halfsine, the maximum speed is as follows, based on the equation in 2) on page 210.

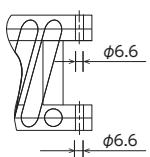
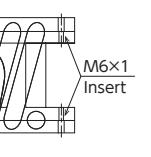
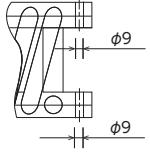
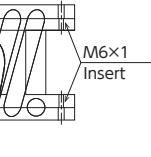
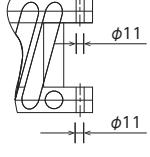
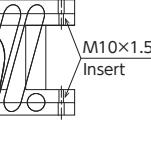
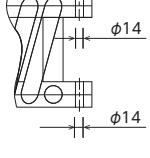

$$V: \text{Max. speed} = \frac{19.6 \times G_{\text{max}} \times t}{\pi} = \frac{19.6 \times 15 \times 0.01}{\pi} = 0.9358\text{m/s}$$

$$X: \text{Flex} = \frac{1,000 \times V^2}{9.8 \times G_a} = \frac{1,000 \times 0.9358^2}{9.8 \times 5} = 17.87\text{mm}$$

Fmax : Impact load per anti-vibration device = $9.8 \times m \times G_a = 9.8 \times 15 \times 5 = 880\text{N}$

Selected FH08064-4 using Fmax, X and Impact selection graph. Next, the model description will be

FH08064-4-A because the shape of mounting parts is A. Such a model description can be used for ordering.








Helical Vibration Absorber

FHM Series

Shape of Mounting Parts

〈Geometry of the mountings for aluminum retainer〉

For this series, there are two types of standard shapes of mounting parts: D (drill end) and A (screw).

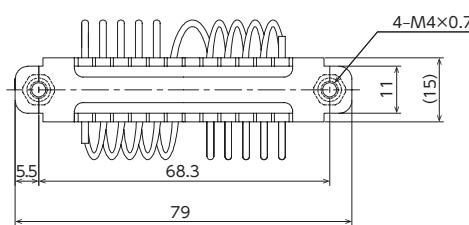
Shape	Shape of mounting parts Symbol	Standard shape of mounting parts	
		D	A
FHM08375			
FHM08500			
FHM08625			
FHM08875			

Helical Vibration Absorber

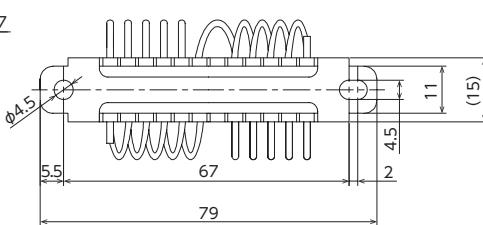
FH10016

RoHS Compliant

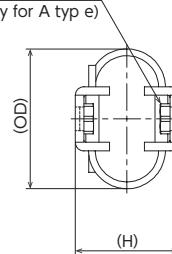
●Products specification might be changed without notice.

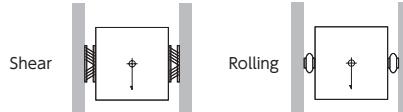


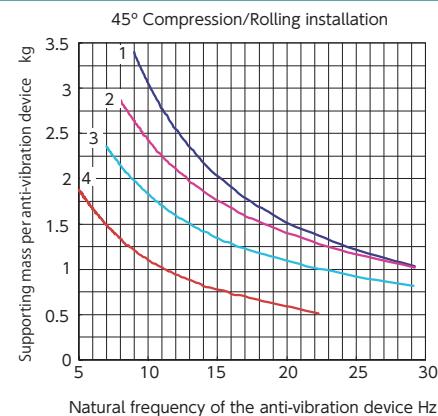
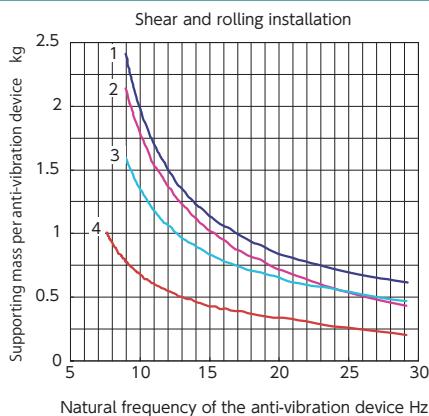
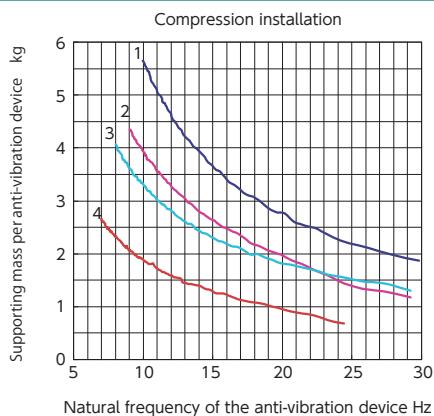
Specifications

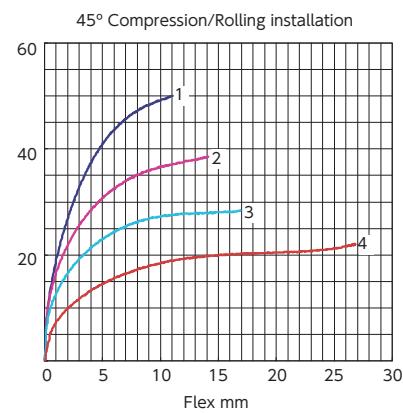
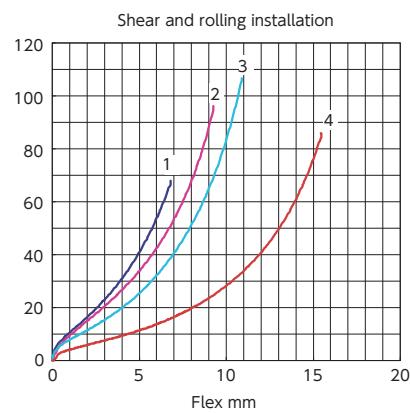
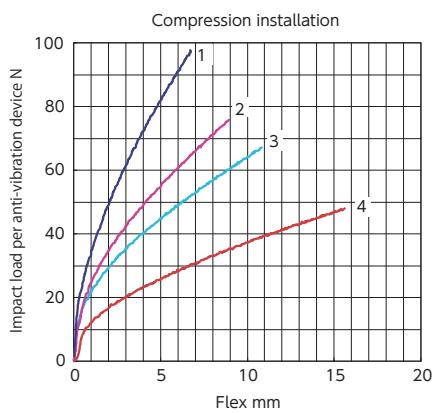

Model	H mm	OD mm	Mass g	Max. flex mm		
				Compression	Shear and rolling	45° Compression /Rolling
FH10016-1-□	23.3	33.5	51	6.3	10.2	9.5
FH10016-2-□	27.1	37.4	52	10.1	15.2	14.3
FH10016-3-□	29.3	39.8	53	12.3	17.8	17.4
FH10016-4-□	34.0	45.4	55	16.6	22.9	23.5

□ will be filled in with the mounting type either A or D.


A type (screw of mounting part)


D type (drill end of mounting part)




Press fitting nut
(Only for A type)




Installation
Method

Vibration Selection Graph

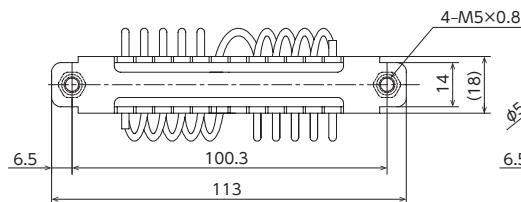
Impact Selection Graph

Helical Vibration Absorber

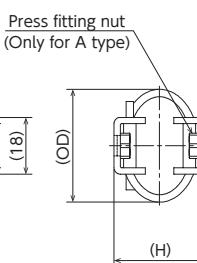
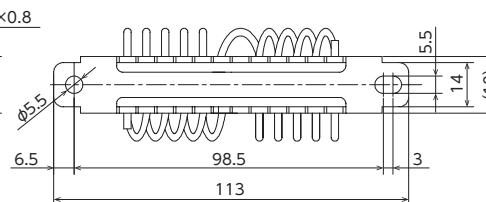
FH10024

RoHS Compliant

●Products specification might be changed without notice.

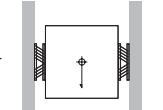


Specifications

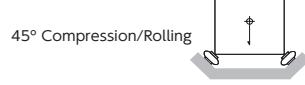


Model	H mm	OD mm	Mass g	Max. flex mm		
				Compression	Shear and rolling	45° Compression/ Rolling
FH10024-1-□	28.8	37.8	102	7.4	10.2	10.5
FH10024-2-□	30.0	41.5	105	8.9	12.7	12.6
FH10024-3-□	35.2	46.1	108	13.9	15.2	19.7
FH10024-4-□	39.7	51.7	112	18.3	20.3	25.9

□ will be filled in with the mounting type either A or D.

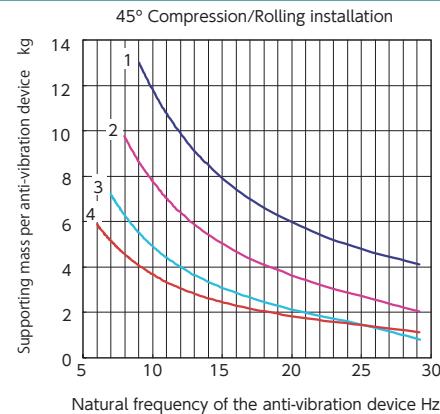
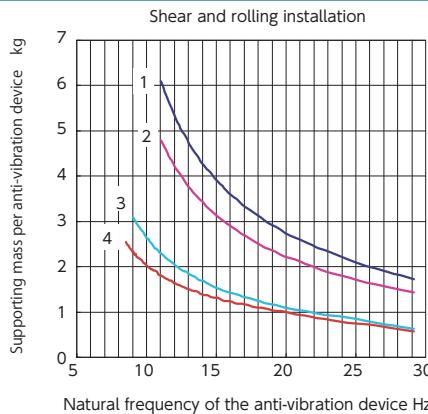
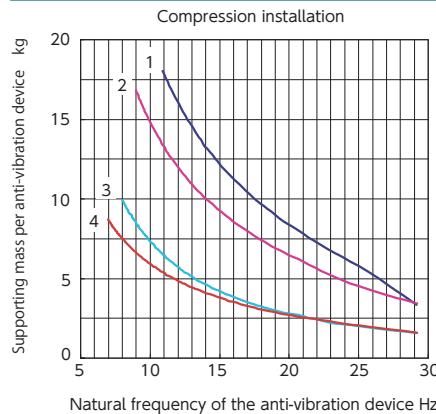
A type (screw of mounting part)


D type (drill end of mounting part)

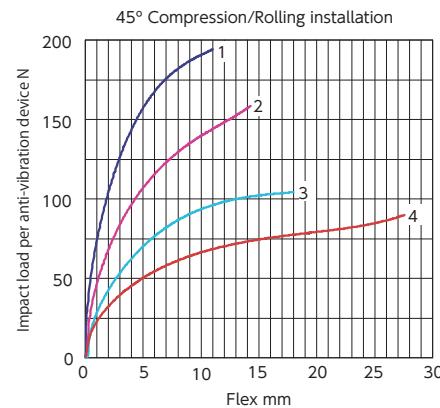
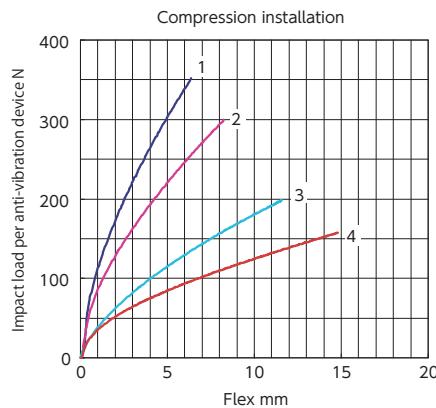
Installation
Method


Compression

Shear

Rolling

45° Compression/Rolling

Vibration Selection Graph

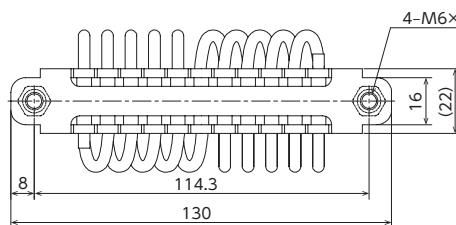
Impact Selection Graph

Helical Vibration Absorber

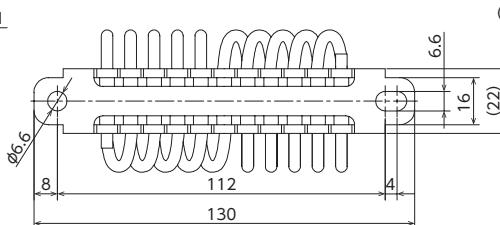
FH10040

RoHS Compliant

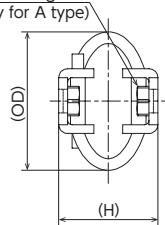
●Products specification might be changed without notice.



Specifications

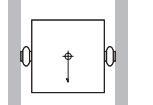

Model	H mm	OD mm	Mass g	Max. flex mm		
				Compression	Shear and rolling	45° Compression/ Rolling
FH10040-1-□	33.5	50.6	223	8.2	12.7	11.6
FH10040-2-□	35.6	52.2	232	10.4	15.2	14.7
FH10040-3-□	40.9	58.4	235	15.4	20.3	21.8
FH10040-4-□	45.7	64.6	249	20.2	27.9	28.6

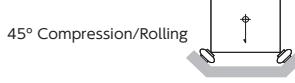
□ will be filled in with the mounting type either A or D.


A type (screw of mounting part)

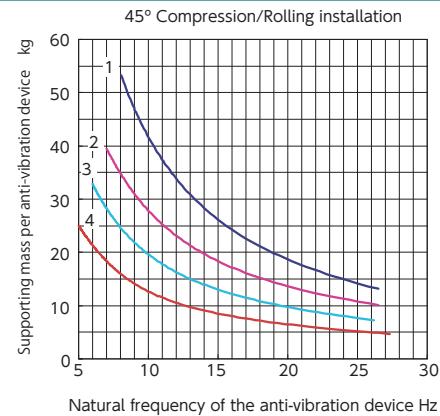
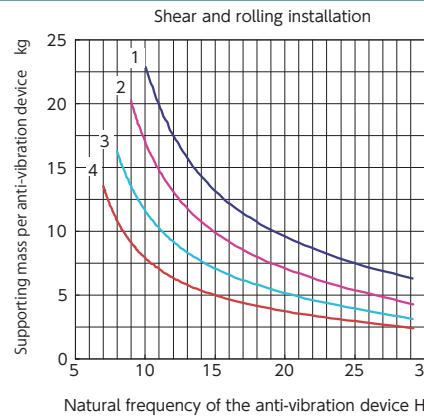
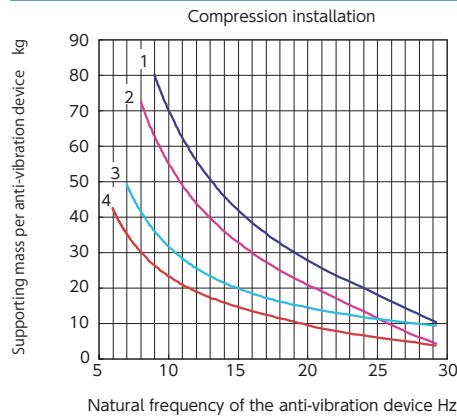
D type (drill end of mounting part)

Press fitting nut
(Only for A type)

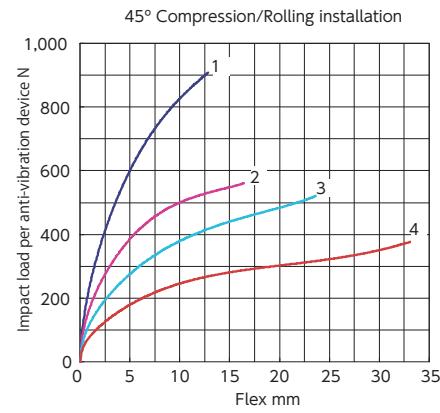
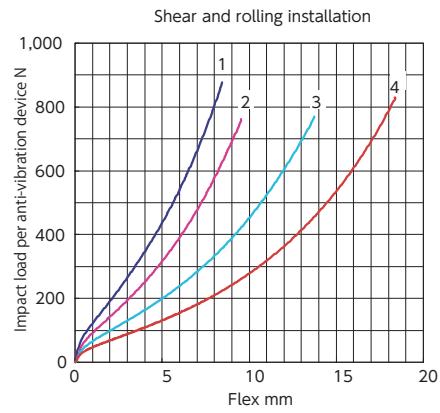
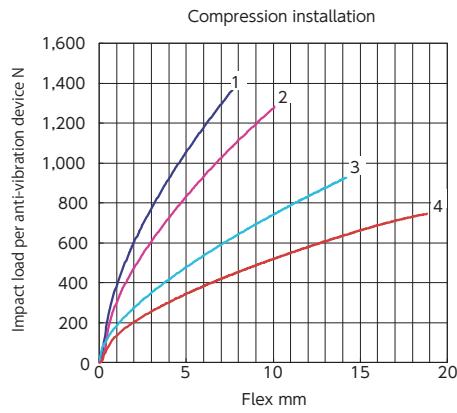

Installation
Method


Compression

Shear

Rolling

45° Compression/Rolling

Vibration Selection Graph

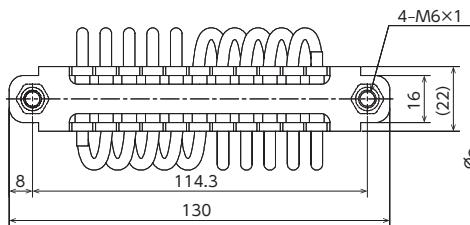
Impact Selection Graph

Helical Vibration Absorber

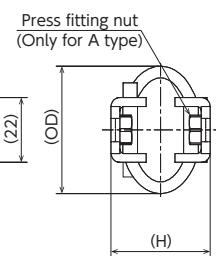
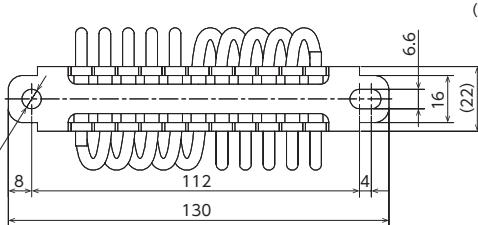
FH10048

RoHS Compliant

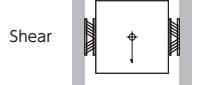
● Products specification might be changed without notice.

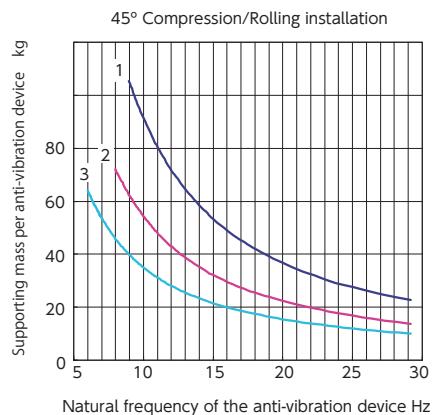
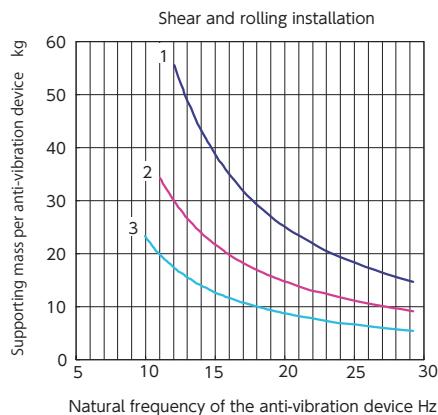
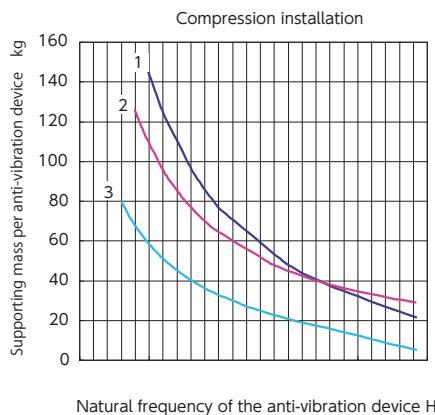


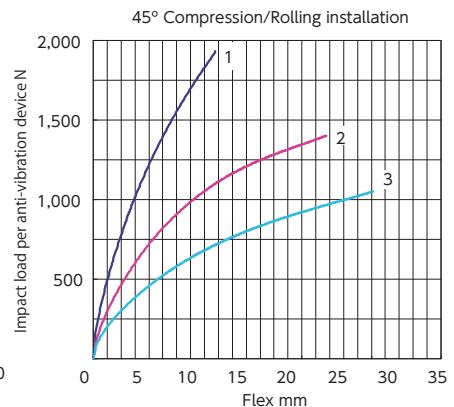
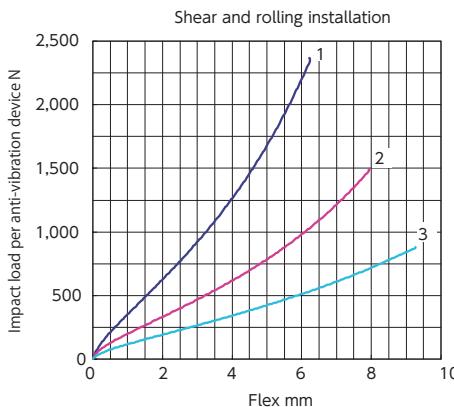
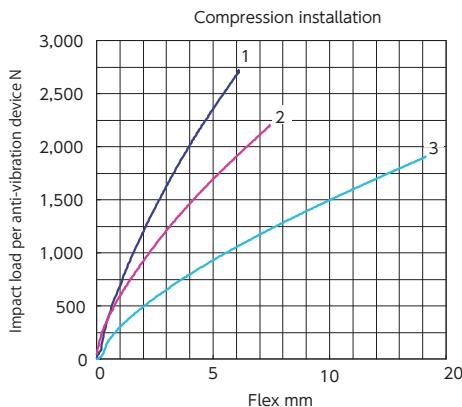
Specifications



Model	H mm	OD mm	Mass g	Max. flex mm		
				Compression	Shear and rolling	45° Compression /Rolling
FH10048-1-□	33.5	46.1	256	6.2	10.2	8.8
FH10048-2-□	37.8	51.4	280	10.9	12.7	15.4
FH10048-3-□	42.0	57.4	286	15.0	12.7	21.2

□ will be filled in with the mounting type either A or D.


A type (screw of mounting part)




D type (drill end of mounting part)




Installation
Method

Vibration Selection Graph

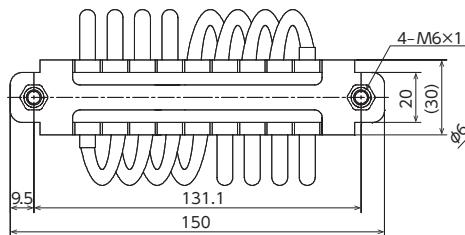
Impact Selection Graph

Helical Vibration Absorber

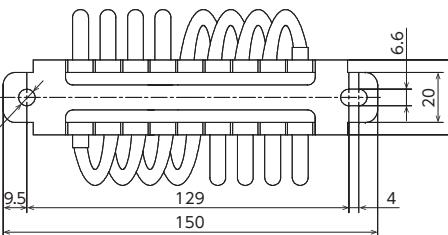
FH08064

RoHS Compliant

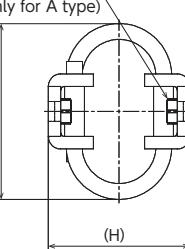
●Products specification might be changed without notice.



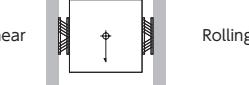
Specifications


Model	H mm	OD mm	Mass g	Max. flex mm		
				Compression	Shear and rolling	45° Compression/ Rolling
FH08064-1-□	54.1	75.0	566	16.4	20.3	23.2
FH08064-2-□	60.8	82.0	595	22.9	25.4	32.4
FH08064-3-□	70.8	98.0	679	32.4	40.6	45.8
FH08064-4-□	79.7	112.6	698	42.9	48.3	60.7

□ will be filled in with the mounting type either A or D.


A type (screw of mounting part)

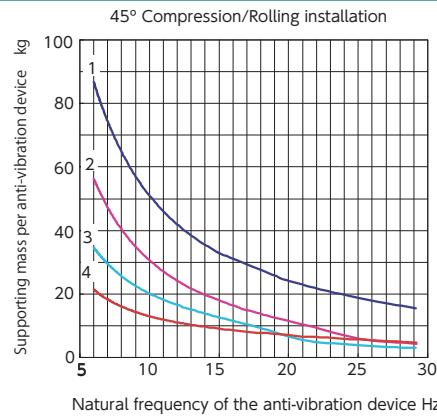
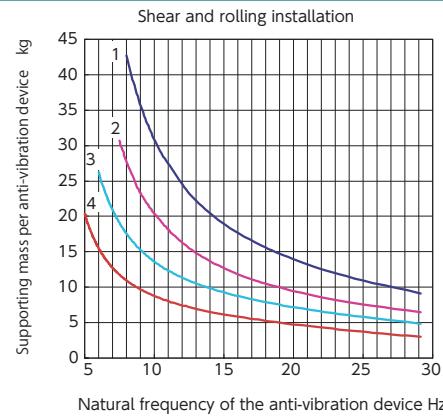
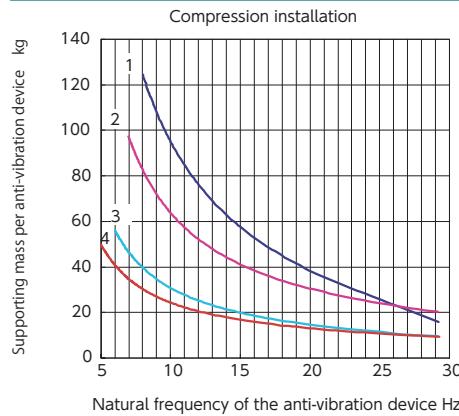
D type (drill end of mounting part)


Press fitting nut
(Only for A type)

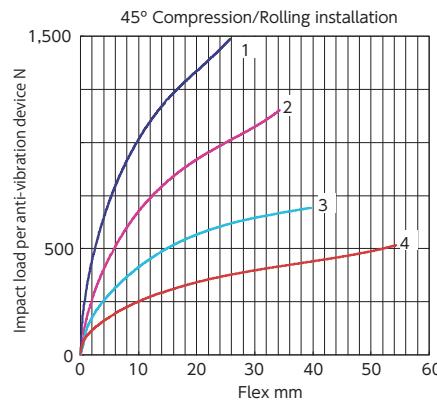
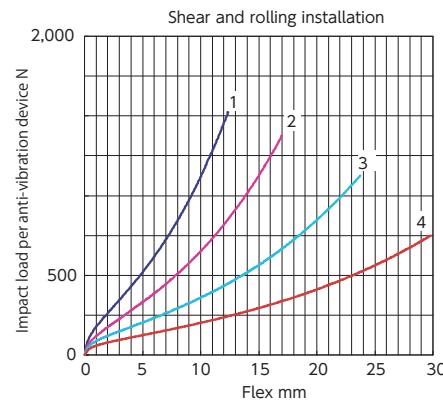
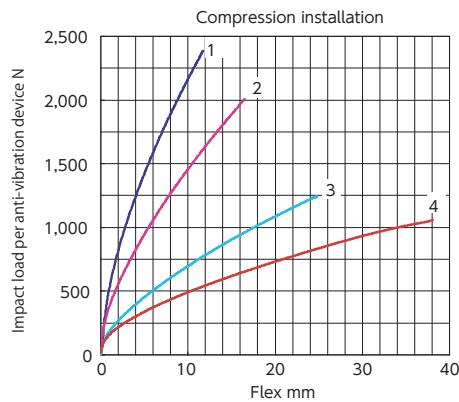
Installation
Method

Compression

Shear

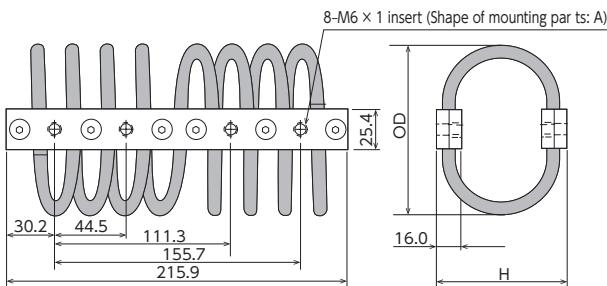
Rolling

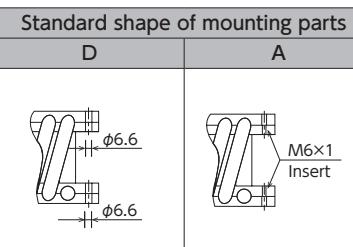
45° Compression/Rolling

Vibration Selection Graph

Impact Selection Graph


Helical Vibration Absorber

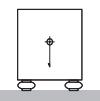
Customized orders


FHM08375

● Products specification might be changed without notice.

Dimensions

Model	H mm	OD mm	Mass g
FHM08375-1	71.1	84.1	1.043
FHM08375-3	76.2	104.9	1.179
FHM08375-7	108.0	139.7	1.406

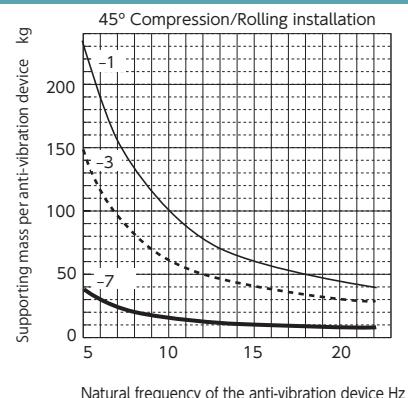
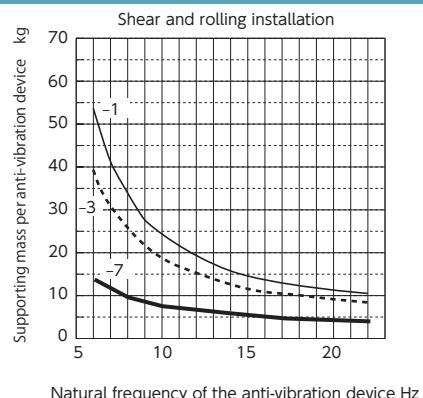
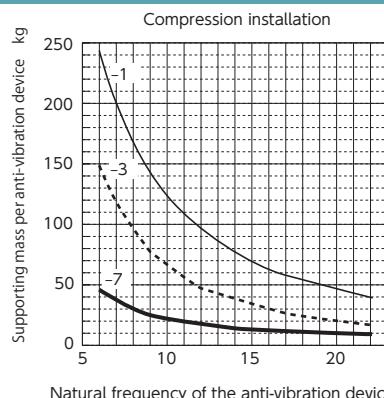

Please refer to page 208 if you require other shapes M6 x 1 for your mounting parts.

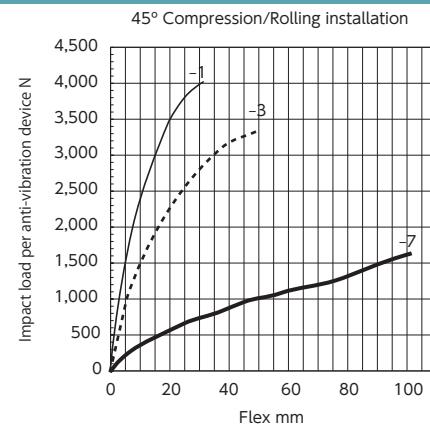
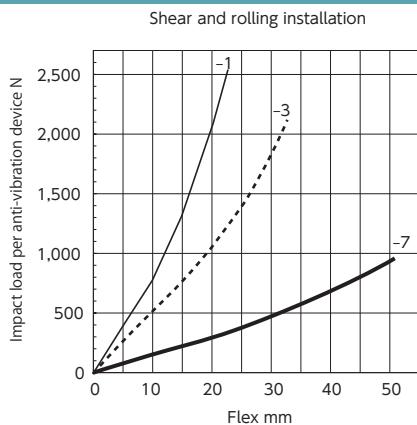
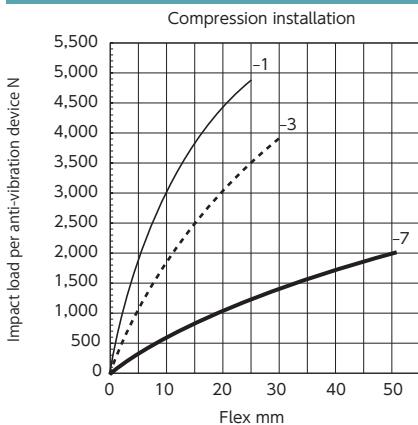
Model	Max. flex mm		
	Compression	Shear and rolling	45° Compression /Rolling
FHM08375-1-□	25.4	25.4	38.1
FHM08375-3-□	33.0	38.1	58.4
FHM08375-7-□	55.9	55.9	114.3

□ will be filled in with the mounting type either A or D.

Installation Method

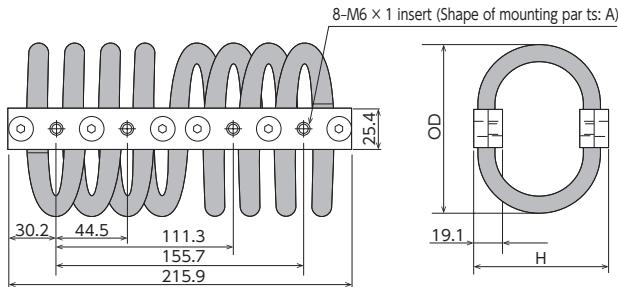
Compression




Shear




Rolling

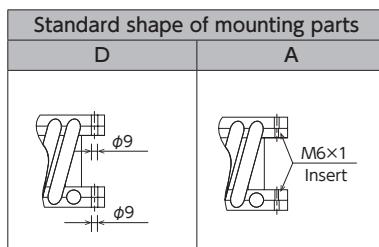
Vibration Selection Graph

Impact Selection Graph


Helical Vibration Absorber

Customized orders

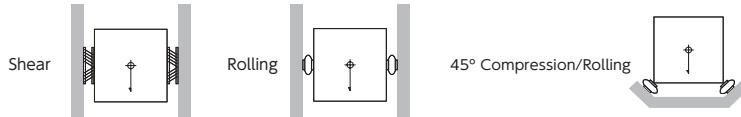
FHM08500


●Products specification might be changed without notice.

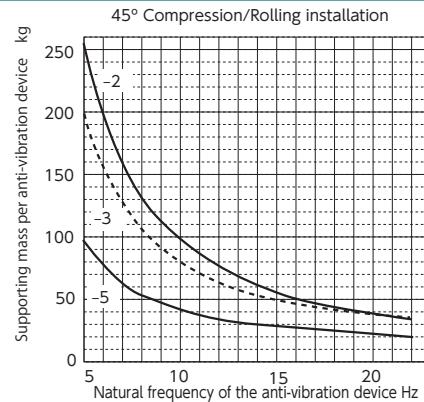
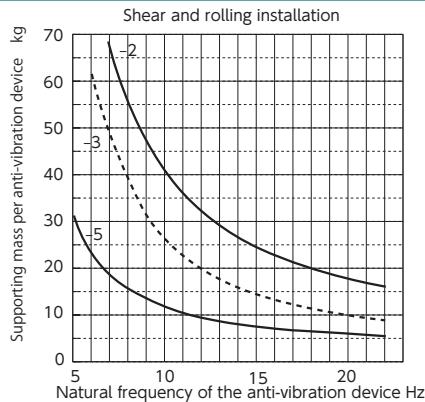
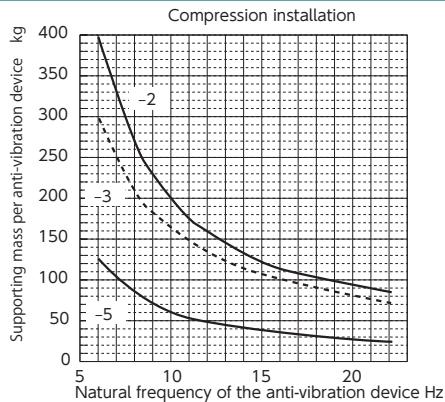
Dimensions

Model	H mm	OD mm	Mass kg
FHM08500-2	88.9	104.9	1.769
FHM08500-3	95.3	120.7	1.950
FHM08500-5	124.5	143.5	2.358

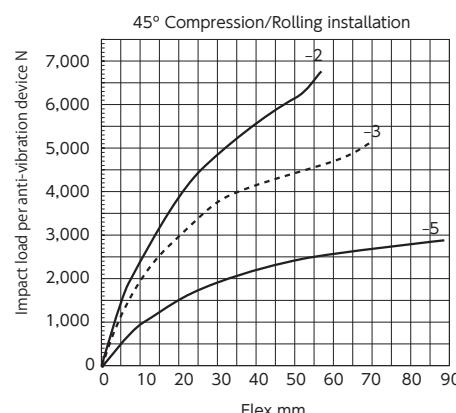
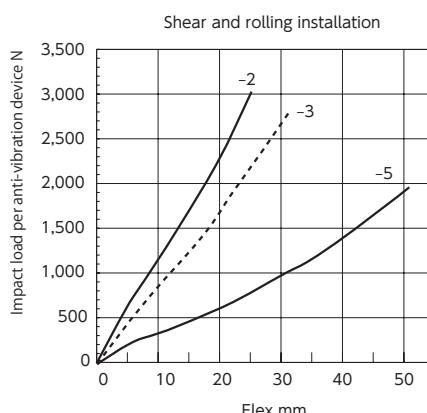
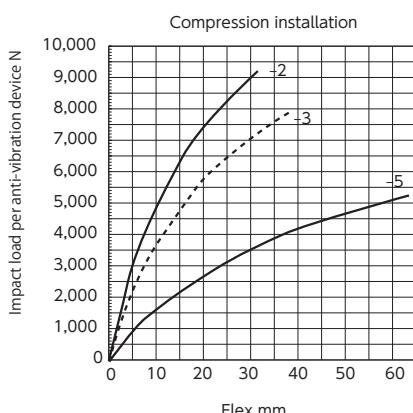
Standard Shape of Mounting Parts and Maximum Flex



Please refer to page 208 if you require other shapes M6 × 1 for your mounting parts.

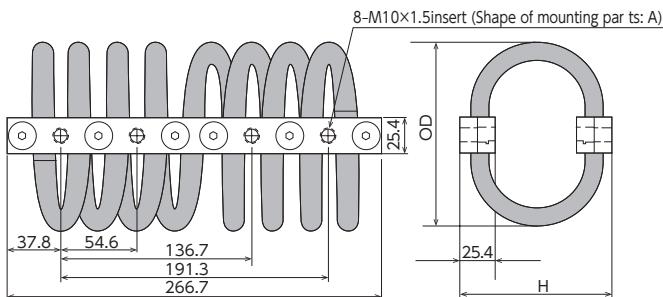




Model	Max. flex mm		
	Compression	Shear and rolling	45° Compression /Rolling
FHM08500-2-□	40.6	33.0	68.6
FHM08500-3-□	43.2	38.1	81.3
FHM08500-5-□	71.1	58.4	101.6




□ will be filled in with the mounting type either A or D.

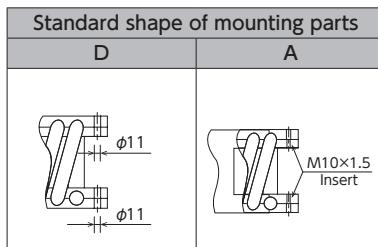
Vibration Selection Graph

Impact Selection Graph


Helical Vibration Absorber

Customized orders

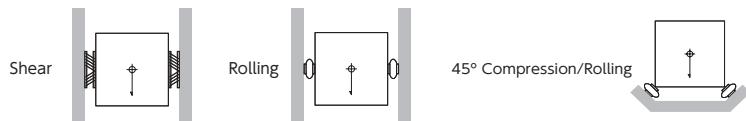
FHM08625


●Products specification might be changed without notice.

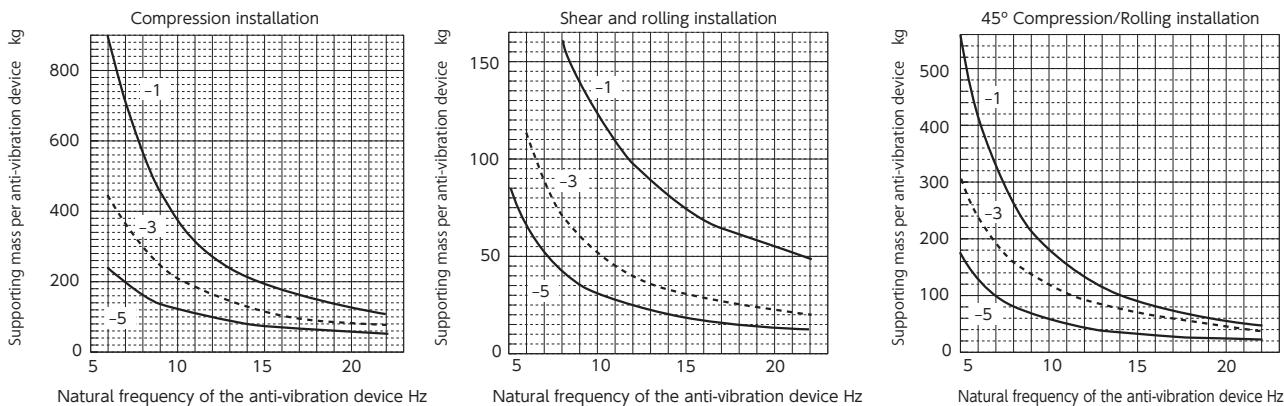
Dimensions

Model	H mm	OD mm	Mass kg
FHM08625-1	88.9	101.6	2.875
FHM08625-3	109.2	134.6	3.592
FHM08625-5	127.0	165.1	4.236

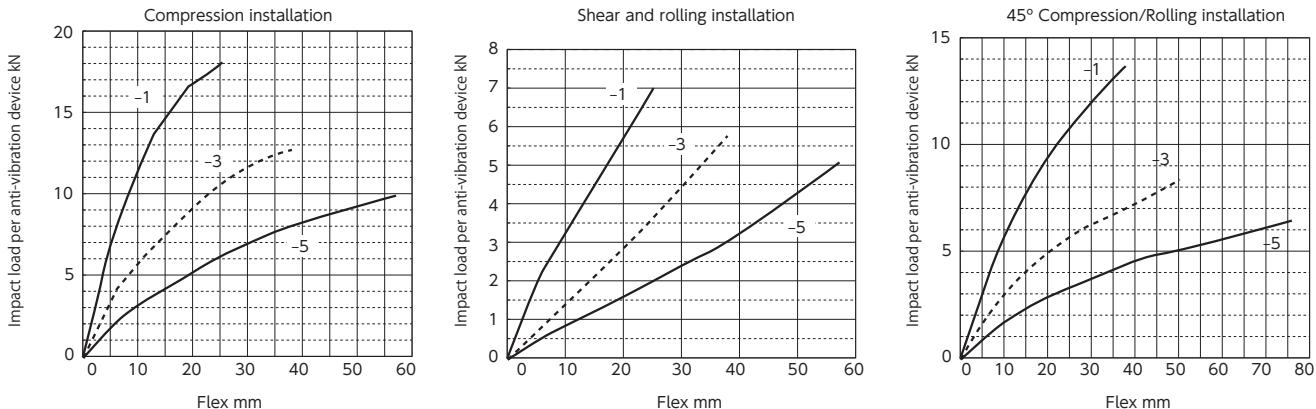
Standard Shape of Mounting Parts and Maximum Flex



Please refer to page 208 if you require other shapes M6 x 1 for your mounting parts.

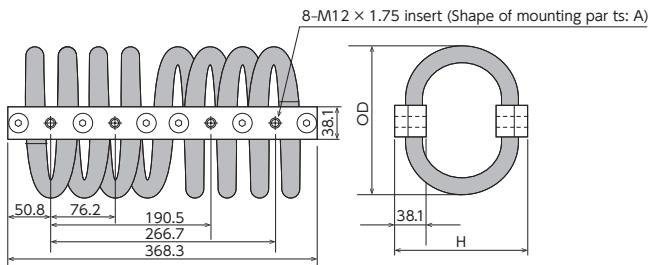


Model	Max. flex mm		
	Compression	Shear and rolling	45° Compression /Rolling
FHM08625-1-□	30.5	30.5	45.7
FHM08625-3-□	45.7	45.7	71.1
FHM08625-5-□	63.5	63.5	91.4


□ will be filled in with the mounting type either A or D.

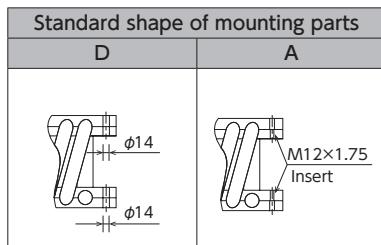
Vibration Selection Graph

Impact Selection Graph


Helical Vibration Absorber

Customized orders

FHM08875


●Products specification might be changed without notice.

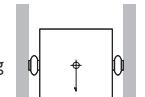
Dimensions

Model	H mm	OD mm	Mass kg
FHM08875-1	133.4	139.7	8.164
FHM08875-3	158.8	177.8	9.525
FHM08875-4	190.5	209.6	10.886

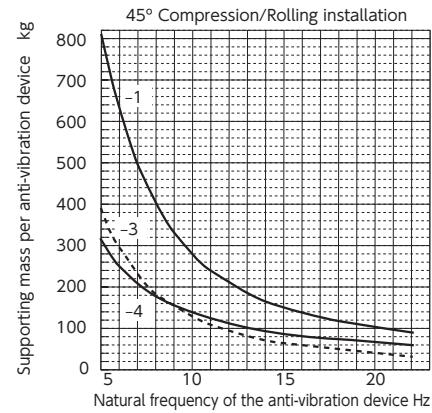
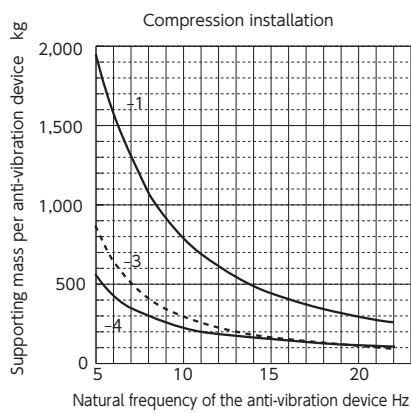
Standard Shape of Mounting Parts and Maximum Flex

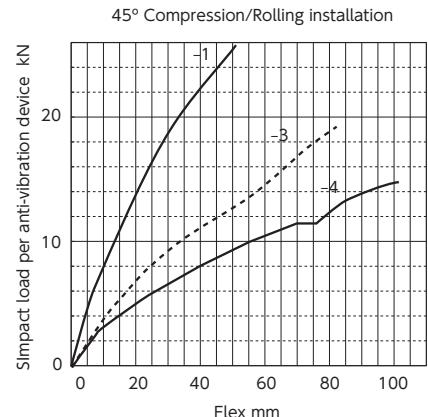
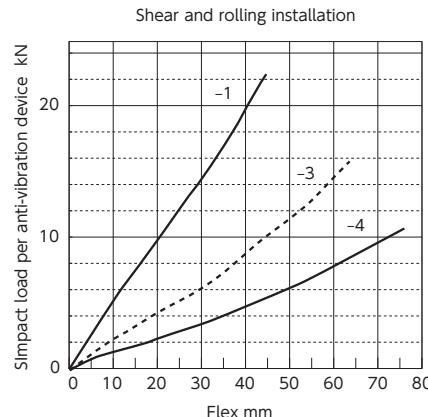
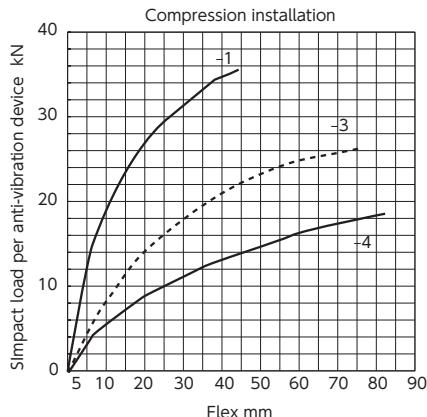
Please refer to page 208 if you require other shapes.

Model	Max. flex mm		
	Compression	Shear and rolling	45° Compression / Rolling
FHM08875-1-□	50.8	53.3	63.5
FHM08875-3-□	76.2	73.7	96.5
FHM08875-4-□	91.4	83.8	119.4


□ will be filled in with the mounting type either A or D.

Installation Method



Compression




Rolling

Vibration Selection Graph

Impact Selection Graph

6

Model Selection Form

Rotary Damper/Vane Damper Model Selection Form

1. Fill in an application of a rotary/vane damper (for what/how?)

2. Please draw a simple diagram of the mechanism/device in which you intend to install the soft absorber and the shape of the mounting parts.
 [Machine/Device] [Shape of Mounting Parts]

3. Fill in the operating conditions for a rotary damper/vane damper

(The items that require no special designation are not required to be filled in.)

Conditions for Use

For Rotational Motion

Body Dimensions	D	mm
	W	mm
	H (thickness)	mm
Position of gravity center of the body		
Angle for use	degrees	
Operating Duration		sec

For linear motion

Body Moving Distance	mm
Body Moving Duration	sec
Driving Force	N

Body Mass	kg
Direction for Use	Horizontal Rotation Vertical Rotation Vertical Movement Horizontal Movement
Cycle of use cycle	cycle/min
Temperature for use	°C
Environment for use	Indoors Outdoors

4. Fill in the required quantity (planned quantity for mass production)

Your company's name	TEL
Division/Department	FAX
Representative's name	Adress

Contact information : FUJI LATEX CO., LTD. International Department. TEL +81-03-3259-2530 FAX +81-03-3293-6070

Soft Absorber Model Selection Form

For Linear Movement

1. Please tell us your intended purpose for using a soft absorber. (What you intend to use it on and how?).

2. Please draw a simple diagram of the mechanism/device in which you intend to install the soft absorber and the shape of the mounting parts.
[Machine/Device] [Shape of Mounting Parts]

3. Please specify what kind of function and shape you would like to see in the soft absorber.

(You may skip this part if you do not have any particular preference)

Shape

Total length	mm or less
Stroke	mm
External diameter	Screw type M × ((pitch)) Non-screw type ϕ or less
Cap	Required · Not required

Function

Max. drag	or less
Deceleration	or less
Recovering power	or less
Braking time	
Adjustment Method	Fixed · Adjustable

4. Please enter your impact conditions and usage environment.

Impact conditions

Impact rate	m/s
Mass of the colliding object	Kg
External thrust	N
Operating cycle	times/minutes
Eccentric angle	degrees
Number of supports for soft absorber	pcs

Operating direction

Horizontal	Friction coefficient μ =	*1
Perpendicular	Facing upward · Facing downward	
Slope	From the horizontal surface	*2

*1 Please enter if using a conveyer, etc.

*2 Positive value for downward direction

Using a cylinder

Drive source	Pneumatic pressure · Hydraulic pressure
Internal diameter of the cylinder	ϕ
Pressure used	MPa
Number of units	units

Usage environment

Ambient temperature	°C
Contact with liquid	No · Yes
Contact with dust	No · Yes
Measures against copper ions	None · Exterior only · Full

5. Please enter the number of units (expected number of mass-produced units) you require. _____ units (Monthly · Single order)

Your company's name	TEL
Division/Department	FAX
Representative's name	Address

Contact information : FUJI LATEX CO., LTD. International Department. TEL +81-03-3259-2530 FAX +81-03-3293-6070

Soft Absorber Model Selection Form

For Rotational Movement

1. Please tell us your intended purpose for using a soft absorber. (What you intend to use it on and how?).

2. Please draw a simple diagram of the mechanism/device in which you intend to install the soft absorber and the shape of the mounting parts.
 [Machine/Device] [Shape of Mounting Parts]

3. Please specify what kind of function and shape you would like to see in the soft absorber.

(You may skip this part if you do not have any particular preference)

Shape

Total length	mm or less	
Stroke	mm	
External diameter	Screw type	M × ((pitch))
	Non-screw type	φ or less
Cap	Required · Not required	

Function

Max. drag	or less
Deceleration	or less
Recovering power	or less
Braking time	
Adjustment Method	Fixed · Adjustable

4. Please enter your impact conditions and usage environment.

Impact conditions

Colliding Speed	m/s	
Colliding Mass	Kg	
External Driving Force	N	
Angular Velocity (fill in either one of these)	rad/s	
Moment of Inertia	degrees in	seconds
Driving Source Torque		
Driving Source Type		
Cycle of Use	cycle/min	
Inclination Angle	degrees	
Number of supports for soft absorber	pcs	

Operating direction

Direction of Rotation	Horizontal / Vertical / Inclined (°)
Position of Gravity Center	from rotating axle mm
Stopping Position	from horizontal surface ° *1
Mounting Position	from rotating axle mm

*1 Downward is positive.

Usage environment

Ambient Temperature	°C
Adhesion of liquid, etc.	Present / Absent
Adhesion of power dust, etc.	Present / Absent
Countermeasures against copper ion	Present / Perfect

* Please fill in only as far as you know in reference to the examples of selection calculation

5. Please fill in the required quantity (planned number for mass production) pcs (per month/only this time)

Your company's name	TEL
Division/Department	FAX
Representative's name	Adress

Contact information : FUJI LATEX CO., LTD. International Department. TEL +81-03-3259-2530 FAX +81-03-3293-6070

Helical Vibration Absorber Selection Form

1. Please specifically describe the applications for the helical vibration absorber

2. Please describe the schematic diagram of machine/equipment used
(H x W x D, position of gravity center, direction of gravity, planned position for installation, etc.)

3. Conditions for Use

Installation Method (Please circle on either one)		Compression	Shearing and roll 45° compression / roll	
Mass of installed body	M		kg	
Quantity of used vibration absorber (excluding stabilizer)	n		pcs	
Quantity of use as a stabilizer	n		pcs	
Temperature for use		~	°C	~ °C
Other environmental conditions				
Absorption of Vibration		Absorption of Shock		
Machine vibration frequency f	Hz	Free falling height h		m
Machine rotational speed N	rpm	Allowable G value Ga		G
		* Maximum G value Gmax G		G
		* Applied duration of half sin acceleration input t		s
Please fill in the required quantity (planned quantity for mass production)		pcs (per month/only this time)		

Note The symbol "*" stands for a case where the half sin acceleration is input

4. Requested Items

Absorption of Vibration	Absorption of Shock
Allowable Deflection	mm

Your company's name	TEL
Division/Department	FAX
Representative's name	Adress

Contact information : FUJI LATEX CO., LTD. International Department. TEL +81-03-3259-2530 FAX +81-03-3293-6070

FUJI LATEX CO., LTD.

Distributor :

FUJI LATEX CO., LTD.

3-19-1, Kanda-Nishiki-cho, Chiyoda-ku Tokyo, 101-0054 JAPAN

Tel. : +81-3-3259-2530 Fax : +81-3-3293-6070

<https://www.fujilatex.co.jp/en/absorber/> e-mail : info2@fujilatex.co.jp

- Products specification might be changed without notice.
- Fuji Latex is not responsible for any secondary accidents caused by our rotary dampers and soft absorbers. The user should implement preventative measures against such secondary accidents.